Spaces:
Running
Running
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +140 -145
scoring_calculation_system.py
CHANGED
@@ -1509,199 +1509,194 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1509 |
|
1510 |
|
1511 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1512 |
-
"""
|
1513 |
-
主要優化:
|
1514 |
-
1. 更細緻的特徵匹配評估
|
1515 |
-
2. 非線性的權重計算
|
1516 |
-
3. 多層次的條件影響
|
1517 |
-
4. 動態閾值調整
|
1518 |
"""
|
1519 |
-
|
1520 |
-
|
1521 |
-
|
1522 |
-
|
1523 |
-
|
1524 |
-
|
1525 |
-
|
1526 |
-
|
1527 |
-
'VERY HIGH': {'min': 120, 'optimal': 180, 'factor': 1.5},
|
1528 |
-
'HIGH': {'min': 90, 'optimal': 120, 'factor': 1.3},
|
1529 |
-
'MODERATE': {'min': 45, 'optimal': 90, 'factor': 1.1},
|
1530 |
-
'LOW': {'min': 20, 'optimal': 45, 'factor': 0.9}
|
1531 |
-
},
|
1532 |
-
'experience': {
|
1533 |
-
'beginner': {'High': 0.4, 'Moderate': 0.7, 'Low': 0.9},
|
1534 |
-
'intermediate': {'High': 0.7, 'Moderate': 0.85, 'Low': 0.95},
|
1535 |
-
'advanced': {'High': 0.9, 'Moderate': 0.95, 'Low': 1.0}
|
1536 |
-
}
|
1537 |
-
}
|
1538 |
-
|
1539 |
-
# 評估空間適配性
|
1540 |
-
def evaluate_space_compatibility():
|
1541 |
-
size = breed_info['Size']
|
1542 |
-
base_threshold = feature_thresholds['space'][user_prefs.living_space][size]
|
1543 |
-
space_score = scores['space']
|
1544 |
|
1545 |
-
|
1546 |
-
|
1547 |
-
|
1548 |
-
elif user_prefs.living_space == 'house_large' and size in ['Large', 'Giant']:
|
1549 |
-
space_score *= 1.2
|
1550 |
|
1551 |
-
|
1552 |
-
|
1553 |
-
|
1554 |
-
|
1555 |
-
|
1556 |
-
|
1557 |
-
|
1558 |
-
|
1559 |
-
|
1560 |
-
|
1561 |
-
|
1562 |
-
|
1563 |
-
|
1564 |
-
|
1565 |
-
|
1566 |
-
|
1567 |
-
|
1568 |
-
|
1569 |
-
|
1570 |
-
|
|
|
|
|
|
|
|
|
1571 |
|
1572 |
-
# 計算調整後的分數
|
1573 |
adjusted_scores = {
|
1574 |
-
|
1575 |
-
|
1576 |
-
'experience': evaluate_experience_compatibility(),
|
1577 |
-
'grooming': scores['grooming'],
|
1578 |
-
'health': scores['health'],
|
1579 |
-
'noise': scores['noise']
|
1580 |
-
}
|
1581 |
-
|
1582 |
-
# 基礎權重設定
|
1583 |
-
base_weights = {
|
1584 |
-
'space': 0.35,
|
1585 |
-
'exercise': 0.30,
|
1586 |
-
'experience': 0.20,
|
1587 |
-
'grooming': 0.15,
|
1588 |
-
'health': 0.10,
|
1589 |
-
'noise': 0.10
|
1590 |
}
|
1591 |
|
1592 |
-
#
|
1593 |
-
def
|
1594 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1595 |
|
1596 |
-
|
1597 |
-
if user_prefs.living_space == 'apartment':
|
1598 |
-
weights['space'] *= 1.4
|
1599 |
-
weights['noise'] *= 1.3
|
1600 |
|
1601 |
-
#
|
1602 |
-
|
1603 |
-
|
1604 |
-
weights['exercise'] *= 1.3
|
1605 |
-
|
1606 |
-
# 經驗權重調整
|
1607 |
-
if user_prefs.experience_level == 'beginner':
|
1608 |
-
weights['experience'] *= 1.4
|
1609 |
|
1610 |
-
|
1611 |
-
|
1612 |
-
|
1613 |
-
|
1614 |
-
|
1615 |
-
|
1616 |
-
|
1617 |
-
|
1618 |
-
|
1619 |
-
|
1620 |
-
|
1621 |
-
primary_score = sum(weighted_scores[p] for p in primary_params)
|
1622 |
-
secondary_score = sum(weighted_scores[p] for p in weighted_scores if p not in primary_params)
|
1623 |
-
|
1624 |
-
# 計算基礎分數
|
1625 |
-
base_score = (primary_score * 0.7 + secondary_score * 0.3)
|
1626 |
|
1627 |
-
#
|
1628 |
-
|
|
|
1629 |
|
1630 |
-
#
|
1631 |
-
|
1632 |
-
|
1633 |
|
1634 |
-
#
|
1635 |
-
|
1636 |
-
|
1637 |
-
|
1638 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1639 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1640 |
|
1641 |
-
|
1642 |
-
|
1643 |
-
|
1644 |
return max(0.0, min(1.0, final_score))
|
1645 |
|
1646 |
|
1647 |
def amplify_score_extreme(score: float) -> float:
|
1648 |
-
"""
|
1649 |
-
|
1650 |
-
|
1651 |
-
|
1652 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1653 |
"""
|
1654 |
ranges = {
|
1655 |
-
'
|
1656 |
-
'range': (0.0, 0.
|
1657 |
'out_min': 0.60,
|
|
|
|
|
|
|
|
|
|
|
|
|
1658 |
'out_max': 0.68,
|
1659 |
-
'curve': 1.2
|
1660 |
},
|
1661 |
-
'
|
1662 |
-
'range': (0.
|
1663 |
'out_min': 0.68,
|
1664 |
'out_max': 0.75,
|
1665 |
-
'curve': 1.
|
1666 |
-
},
|
1667 |
-
'average': {
|
1668 |
-
'range': (0.5, 0.65),
|
1669 |
-
'out_min': 0.75,
|
1670 |
-
'out_max': 0.82,
|
1671 |
-
'curve': 1.0
|
1672 |
},
|
1673 |
'good': {
|
1674 |
-
'range': (0.
|
1675 |
-
'out_min': 0.
|
1676 |
-
'out_max': 0.
|
1677 |
-
'curve':
|
1678 |
},
|
1679 |
'excellent': {
|
1680 |
-
'range': (0.
|
1681 |
-
'out_min': 0.
|
1682 |
'out_max': 0.92,
|
1683 |
-
'curve': 1.2
|
1684 |
},
|
1685 |
'perfect': {
|
1686 |
'range': (0.9, 1.0),
|
1687 |
'out_min': 0.92,
|
1688 |
'out_max': 0.95,
|
1689 |
-
'curve': 1.
|
1690 |
}
|
1691 |
}
|
1692 |
-
|
|
|
1693 |
for config in ranges.values():
|
1694 |
range_min, range_max = config['range']
|
1695 |
if range_min <= score <= range_max:
|
1696 |
-
#
|
1697 |
position = (score - range_min) / (range_max - range_min)
|
1698 |
|
1699 |
-
#
|
1700 |
position = pow(position, config['curve'])
|
1701 |
|
1702 |
# 映射到輸出範圍
|
1703 |
result = config['out_min'] + (config['out_max'] - config['out_min']) * position
|
1704 |
|
|
|
1705 |
return round(result, 3)
|
1706 |
|
|
|
1707 |
return 0.60 if score < 0.0 else 0.95
|
|
|
1509 |
|
1510 |
|
1511 |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
|
|
|
|
|
|
|
|
|
|
|
|
1512 |
"""
|
1513 |
+
改進的品種相容性評分系統,著重於:
|
1514 |
+
1. 強化參數變化的影響力
|
1515 |
+
2. 提高品種差異化
|
1516 |
+
3. 更精確的條件匹配評估
|
1517 |
+
"""
|
1518 |
+
# 1. 基礎特徵評估 - 更極端的調整
|
1519 |
+
def evaluate_feature_score(feature: str) -> float:
|
1520 |
+
score = scores[feature]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1521 |
|
1522 |
+
if feature == 'exercise':
|
1523 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1524 |
+
exercise_time = user_prefs.exercise_time
|
|
|
|
|
1525 |
|
1526 |
+
if exercise_needs == 'VERY HIGH':
|
1527 |
+
if exercise_time < 120:
|
1528 |
+
return score * 0.4 # 嚴重懲罰運動不足
|
1529 |
+
elif exercise_time > 150:
|
1530 |
+
return min(1.0, score * 1.5) # 顯著獎勵充足運動
|
1531 |
+
elif exercise_needs == 'LOW' and exercise_time > 120:
|
1532 |
+
return score * 0.6 # 懲罰過度運動
|
1533 |
+
|
1534 |
+
elif feature == 'space':
|
1535 |
+
size = breed_info['Size']
|
1536 |
+
if user_prefs.living_space == 'apartment':
|
1537 |
+
if size in ['Large', 'Giant']:
|
1538 |
+
return score * 0.3 # 更嚴格的空間限制
|
1539 |
+
elif size == 'Small':
|
1540 |
+
return min(1.0, score * 1.4) # 更高的小型犬獎勵
|
1541 |
+
|
1542 |
+
elif feature == 'experience':
|
1543 |
+
care_level = breed_info.get('Care Level', 'MODERATE')
|
1544 |
+
if care_level == 'High' and user_prefs.experience_level == 'beginner':
|
1545 |
+
return score * 0.4
|
1546 |
+
elif care_level == 'Low' and user_prefs.experience_level == 'advanced':
|
1547 |
+
return score * 0.8 # 略微降低過度資格
|
1548 |
+
|
1549 |
+
return score
|
1550 |
|
1551 |
+
# 2. 計算調整後的分數
|
1552 |
adjusted_scores = {
|
1553 |
+
feature: evaluate_feature_score(feature)
|
1554 |
+
for feature in scores.keys()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1555 |
}
|
1556 |
|
1557 |
+
# 3. 動態權重分配 - 根據條件強化關鍵特徵
|
1558 |
+
def calculate_feature_weight(feature: str) -> float:
|
1559 |
+
base_weights = {
|
1560 |
+
'space': 0.35,
|
1561 |
+
'exercise': 0.30,
|
1562 |
+
'experience': 0.20,
|
1563 |
+
'grooming': 0.15,
|
1564 |
+
'health': 0.10,
|
1565 |
+
'noise': 0.10
|
1566 |
+
}
|
1567 |
|
1568 |
+
weight = base_weights[feature]
|
|
|
|
|
|
|
1569 |
|
1570 |
+
# 條件相關的權重調整
|
1571 |
+
if feature == 'space' and user_prefs.living_space == 'apartment':
|
1572 |
+
weight *= 1.6 # 加強空間限制的影響
|
|
|
|
|
|
|
|
|
|
|
1573 |
|
1574 |
+
elif feature == 'exercise':
|
1575 |
+
if user_prefs.exercise_time > 150:
|
1576 |
+
weight *= 1.4
|
1577 |
+
elif user_prefs.exercise_time < 60:
|
1578 |
+
weight *= 1.3
|
1579 |
+
|
1580 |
+
elif feature == 'experience':
|
1581 |
+
if user_prefs.experience_level in ['beginner', 'advanced']:
|
1582 |
+
weight *= 1.3 # 強化極端經驗等級的影響
|
1583 |
+
|
1584 |
+
return weight
|
|
|
|
|
|
|
|
|
|
|
1585 |
|
1586 |
+
# 4. 計算加權分數
|
1587 |
+
weights = {feature: calculate_feature_weight(feature)
|
1588 |
+
for feature in scores.keys()}
|
1589 |
|
1590 |
+
# 正規化權重
|
1591 |
+
total_weight = sum(weights.values())
|
1592 |
+
normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1593 |
|
1594 |
+
# 5. 計算基礎分數 - 分離主要和次要特徵
|
1595 |
+
primary_features = {'space', 'exercise', 'experience'}
|
1596 |
+
secondary_features = set(scores.keys()) - primary_features
|
1597 |
+
|
1598 |
+
primary_score = sum(adjusted_scores[f] * normalized_weights[f]
|
1599 |
+
for f in primary_features)
|
1600 |
+
secondary_score = sum(adjusted_scores[f] * normalized_weights[f]
|
1601 |
+
for f in secondary_features)
|
1602 |
+
|
1603 |
+
# 6. 特殊條件評估
|
1604 |
+
condition_multiplier = 1.0
|
1605 |
+
|
1606 |
+
# 空間條件
|
1607 |
+
if user_prefs.living_space == 'apartment':
|
1608 |
+
if breed_info['Size'] in ['Large', 'Giant']:
|
1609 |
+
condition_multiplier *= 0.7
|
1610 |
+
elif breed_info['Size'] == 'Small':
|
1611 |
+
condition_multiplier *= 1.2
|
1612 |
+
|
1613 |
+
# 運動條件
|
1614 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1615 |
+
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 120:
|
1616 |
+
condition_multiplier *= 0.8
|
1617 |
+
elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
1618 |
+
condition_multiplier *= 0.85
|
1619 |
+
|
1620 |
+
# 7. 計算最終分數
|
1621 |
+
base_score = (primary_score * 0.7 + secondary_score * 0.3)
|
1622 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1623 |
|
1624 |
+
final_score = (base_score * condition_multiplier * 0.8) + (breed_bonus * 0.2)
|
1625 |
+
|
|
|
1626 |
return max(0.0, min(1.0, final_score))
|
1627 |
|
1628 |
|
1629 |
def amplify_score_extreme(score: float) -> float:
|
1630 |
+
"""
|
1631 |
+
優化的分數映射函數
|
1632 |
+
|
1633 |
+
主要改進:
|
1634 |
+
1. 更細緻的分數區間劃分,讓分數轉換更平滑
|
1635 |
+
2. 根據不同分數段使用不同的轉換曲線
|
1636 |
+
3. 確保極端分數能得到更極端的映射
|
1637 |
+
|
1638 |
+
分數區間的設計邏輯:
|
1639 |
+
- 極差匹配 (0.0-0.2): 60-63% - 快速的線性增長
|
1640 |
+
- 差匹配 (0.2-0.4): 63-68% - 緩慢的增長
|
1641 |
+
- 中等匹配 (0.4-0.6): 68-75% - ��定的線性增長
|
1642 |
+
- 良好匹配 (0.6-0.75): 75-85% - 加速增長
|
1643 |
+
- 優秀匹配 (0.75-0.9): 85-92% - 減速增長
|
1644 |
+
- 完美匹配 (0.9-1.0): 92-95% - 非常緩慢的增長
|
1645 |
"""
|
1646 |
ranges = {
|
1647 |
+
'very_poor': {
|
1648 |
+
'range': (0.0, 0.2),
|
1649 |
'out_min': 0.60,
|
1650 |
+
'out_max': 0.63,
|
1651 |
+
'curve': 1.0 # 線性
|
1652 |
+
},
|
1653 |
+
'poor': {
|
1654 |
+
'range': (0.2, 0.4),
|
1655 |
+
'out_min': 0.63,
|
1656 |
'out_max': 0.68,
|
1657 |
+
'curve': 1.2 # 稍微非線性
|
1658 |
},
|
1659 |
+
'mediocre': {
|
1660 |
+
'range': (0.4, 0.6),
|
1661 |
'out_min': 0.68,
|
1662 |
'out_max': 0.75,
|
1663 |
+
'curve': 1.0 # 線性
|
|
|
|
|
|
|
|
|
|
|
|
|
1664 |
},
|
1665 |
'good': {
|
1666 |
+
'range': (0.6, 0.75),
|
1667 |
+
'out_min': 0.75,
|
1668 |
+
'out_max': 0.85,
|
1669 |
+
'curve': 0.8 # 加速增長
|
1670 |
},
|
1671 |
'excellent': {
|
1672 |
+
'range': (0.75, 0.9),
|
1673 |
+
'out_min': 0.85,
|
1674 |
'out_max': 0.92,
|
1675 |
+
'curve': 1.2 # 減速增長
|
1676 |
},
|
1677 |
'perfect': {
|
1678 |
'range': (0.9, 1.0),
|
1679 |
'out_min': 0.92,
|
1680 |
'out_max': 0.95,
|
1681 |
+
'curve': 1.5 # 強烈的減速
|
1682 |
}
|
1683 |
}
|
1684 |
+
|
1685 |
+
# 找出分數所屬區間並進行映射
|
1686 |
for config in ranges.values():
|
1687 |
range_min, range_max = config['range']
|
1688 |
if range_min <= score <= range_max:
|
1689 |
+
# 計算區間內的相對位置(0-1)
|
1690 |
position = (score - range_min) / (range_max - range_min)
|
1691 |
|
1692 |
+
# 應用非線性曲線來調整增長速度
|
1693 |
position = pow(position, config['curve'])
|
1694 |
|
1695 |
# 映射到輸出範圍
|
1696 |
result = config['out_min'] + (config['out_max'] - config['out_min']) * position
|
1697 |
|
1698 |
+
# 確保結果精確到小數點後三位
|
1699 |
return round(result, 3)
|
1700 |
|
1701 |
+
# 處理超出範圍的情況
|
1702 |
return 0.60 if score < 0.0 else 0.95
|