Spaces:
Running
Running
Upload 3 files
Browse files- breed_recommendation.py +480 -0
- recommendation_html_format.py +571 -0
- smart_breed_matcher.py +962 -0
breed_recommendation.py
ADDED
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import sqlite3
|
3 |
+
import gradio as gr
|
4 |
+
from dog_database import get_dog_description, dog_data
|
5 |
+
from breed_health_info import breed_health_info
|
6 |
+
from breed_noise_info import breed_noise_info
|
7 |
+
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
|
8 |
+
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
|
9 |
+
from smart_breed_matcher import SmartBreedMatcher
|
10 |
+
from description_search_ui import create_description_search_tab
|
11 |
+
|
12 |
+
def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):
|
13 |
+
|
14 |
+
with gr.TabItem("Breed Recommendation"):
|
15 |
+
with gr.Tabs():
|
16 |
+
with gr.Tab("Find by Criteria"):
|
17 |
+
gr.HTML("""
|
18 |
+
<div style='
|
19 |
+
text-align: center;
|
20 |
+
padding: 20px 0;
|
21 |
+
margin: 15px 0;
|
22 |
+
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
|
23 |
+
border-radius: 10px;
|
24 |
+
'>
|
25 |
+
<p style='
|
26 |
+
font-size: 1.2em;
|
27 |
+
margin: 0;
|
28 |
+
padding: 0 20px;
|
29 |
+
line-height: 1.5;
|
30 |
+
background: linear-gradient(90deg, #4299e1, #48bb78);
|
31 |
+
-webkit-background-clip: text;
|
32 |
+
-webkit-text-fill-color: transparent;
|
33 |
+
font-weight: 600;
|
34 |
+
'>
|
35 |
+
Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!
|
36 |
+
</p>
|
37 |
+
</div>
|
38 |
+
""")
|
39 |
+
|
40 |
+
with gr.Row():
|
41 |
+
with gr.Column():
|
42 |
+
living_space = gr.Radio(
|
43 |
+
choices=["apartment", "house_small", "house_large"],
|
44 |
+
label="What type of living space do you have?",
|
45 |
+
info="Choose your current living situation",
|
46 |
+
value="apartment"
|
47 |
+
)
|
48 |
+
|
49 |
+
exercise_time = gr.Slider(
|
50 |
+
minimum=0,
|
51 |
+
maximum=180,
|
52 |
+
value=60,
|
53 |
+
label="Daily exercise time (minutes)",
|
54 |
+
info="Consider walks, play time, and training"
|
55 |
+
)
|
56 |
+
|
57 |
+
grooming_commitment = gr.Radio(
|
58 |
+
choices=["low", "medium", "high"],
|
59 |
+
label="Grooming commitment level",
|
60 |
+
info="Low: monthly, Medium: weekly, High: daily",
|
61 |
+
value="medium"
|
62 |
+
)
|
63 |
+
|
64 |
+
with gr.Column():
|
65 |
+
experience_level = gr.Radio(
|
66 |
+
choices=["beginner", "intermediate", "advanced"],
|
67 |
+
label="Dog ownership experience",
|
68 |
+
info="Be honest - this helps find the right match",
|
69 |
+
value="beginner"
|
70 |
+
)
|
71 |
+
|
72 |
+
has_children = gr.Checkbox(
|
73 |
+
label="Have children at home",
|
74 |
+
info="Helps recommend child-friendly breeds"
|
75 |
+
)
|
76 |
+
|
77 |
+
noise_tolerance = gr.Radio(
|
78 |
+
choices=["low", "medium", "high"],
|
79 |
+
label="Noise tolerance level",
|
80 |
+
info="Some breeds are more vocal than others",
|
81 |
+
value="medium"
|
82 |
+
)
|
83 |
+
|
84 |
+
get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
|
85 |
+
recommendation_output = gr.HTML(label="Breed Recommendations")
|
86 |
+
|
87 |
+
with gr.Tab("Find by Description"):
|
88 |
+
description_input, description_search_btn, description_output, loading_msg = create_description_search_tab()
|
89 |
+
|
90 |
+
|
91 |
+
def on_find_match_click(*args):
|
92 |
+
try:
|
93 |
+
user_prefs = UserPreferences(
|
94 |
+
living_space=args[0],
|
95 |
+
exercise_time=args[1],
|
96 |
+
grooming_commitment=args[2],
|
97 |
+
experience_level=args[3],
|
98 |
+
has_children=args[4],
|
99 |
+
noise_tolerance=args[5],
|
100 |
+
space_for_play=True if args[0] != "apartment" else False,
|
101 |
+
other_pets=False,
|
102 |
+
climate="moderate",
|
103 |
+
health_sensitivity="medium", # 新增: 默認中等敏感度
|
104 |
+
barking_acceptance=args[5] # 使用 noise_tolerance 作為 barking_acceptance
|
105 |
+
)
|
106 |
+
|
107 |
+
recommendations = get_breed_recommendations(user_prefs, top_n=10)
|
108 |
+
|
109 |
+
history_results = [{
|
110 |
+
'breed': rec['breed'],
|
111 |
+
'rank': rec['rank'],
|
112 |
+
'overall_score': rec['final_score'],
|
113 |
+
'base_score': rec['base_score'],
|
114 |
+
'bonus_score': rec['bonus_score'],
|
115 |
+
'scores': rec['scores']
|
116 |
+
} for rec in recommendations]
|
117 |
+
|
118 |
+
# 保存到歷史記錄,也需要更新保存的偏好設定
|
119 |
+
history_component.save_search(
|
120 |
+
user_preferences={
|
121 |
+
'living_space': args[0],
|
122 |
+
'exercise_time': args[1],
|
123 |
+
'grooming_commitment': args[2],
|
124 |
+
'experience_level': args[3],
|
125 |
+
'has_children': args[4],
|
126 |
+
'noise_tolerance': args[5],
|
127 |
+
'health_sensitivity': "medium",
|
128 |
+
'barking_acceptance': args[5]
|
129 |
+
},
|
130 |
+
results=history_results
|
131 |
+
)
|
132 |
+
|
133 |
+
return format_recommendation_html(recommendations, is_description_search=False)
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
print(f"Error in find match: {str(e)}")
|
137 |
+
import traceback
|
138 |
+
print(traceback.format_exc())
|
139 |
+
return "Error getting recommendations"
|
140 |
+
|
141 |
+
def on_description_search(description: str):
|
142 |
+
try:
|
143 |
+
# 初始化匹配器
|
144 |
+
matcher = SmartBreedMatcher(dog_data)
|
145 |
+
breed_recommendations = matcher.match_user_preference(description, top_n=10)
|
146 |
+
|
147 |
+
# 從描述中提取用戶偏好
|
148 |
+
user_prefs = UserPreferences(
|
149 |
+
living_space="apartment" if any(word in description.lower()
|
150 |
+
for word in ["apartment", "flat", "condo"]) else "house_small",
|
151 |
+
exercise_time=120 if any(word in description.lower()
|
152 |
+
for word in ["active", "exercise", "running", "athletic", "high energy"]) else 60,
|
153 |
+
grooming_commitment="high" if any(word in description.lower()
|
154 |
+
for word in ["grooming", "brush", "maintain"]) else "medium",
|
155 |
+
experience_level="experienced" if any(word in description.lower()
|
156 |
+
for word in ["experienced", "trained", "professional"]) else "intermediate",
|
157 |
+
has_children=any(word in description.lower()
|
158 |
+
for word in ["children", "kids", "family", "child"]),
|
159 |
+
noise_tolerance="low" if any(word in description.lower()
|
160 |
+
for word in ["quiet", "peaceful", "silent"]) else "medium",
|
161 |
+
space_for_play=any(word in description.lower()
|
162 |
+
for word in ["yard", "garden", "outdoor", "space"]),
|
163 |
+
other_pets=any(word in description.lower()
|
164 |
+
for word in ["other pets", "cats", "dogs"]),
|
165 |
+
climate="moderate",
|
166 |
+
health_sensitivity="high" if any(word in description.lower()
|
167 |
+
for word in ["health", "medical", "sensitive"]) else "medium",
|
168 |
+
barking_acceptance="low" if any(word in description.lower()
|
169 |
+
for word in ["quiet", "no barking"]) else None
|
170 |
+
)
|
171 |
+
|
172 |
+
final_recommendations = []
|
173 |
+
|
174 |
+
for smart_rec in breed_recommendations:
|
175 |
+
breed_name = smart_rec['breed']
|
176 |
+
breed_info = get_dog_description(breed_name)
|
177 |
+
if not isinstance(breed_info, dict):
|
178 |
+
continue
|
179 |
+
|
180 |
+
# 獲取基礎分數
|
181 |
+
base_score = smart_rec.get('base_score', 0.7)
|
182 |
+
similarity = smart_rec.get('similarity', 0)
|
183 |
+
is_preferred = smart_rec.get('is_preferred', False)
|
184 |
+
|
185 |
+
bonus_reasons = []
|
186 |
+
bonus_score = 0
|
187 |
+
|
188 |
+
# 1. 尺寸評估
|
189 |
+
size = breed_info.get('Size', '')
|
190 |
+
if size in ['Small', 'Tiny']:
|
191 |
+
if "apartment" in description.lower():
|
192 |
+
bonus_score += 0.05
|
193 |
+
bonus_reasons.append("Suitable size for apartment (+5%)")
|
194 |
+
else:
|
195 |
+
bonus_score -= 0.25
|
196 |
+
bonus_reasons.append("Size too small (-25%)")
|
197 |
+
elif size == 'Medium':
|
198 |
+
bonus_score += 0.15
|
199 |
+
bonus_reasons.append("Ideal size (+15%)")
|
200 |
+
elif size == 'Large':
|
201 |
+
if "apartment" in description.lower():
|
202 |
+
bonus_score -= 0.05
|
203 |
+
bonus_reasons.append("May be too large for apartment (-5%)")
|
204 |
+
elif size == 'Giant':
|
205 |
+
bonus_score -= 0.20
|
206 |
+
bonus_reasons.append("Size too large (-20%)")
|
207 |
+
|
208 |
+
# 2. 運��需求評估
|
209 |
+
exercise_needs = breed_info.get('Exercise_Needs', '')
|
210 |
+
if any(word in description.lower() for word in ['active', 'energetic', 'running']):
|
211 |
+
if exercise_needs in ['High', 'Very High']:
|
212 |
+
bonus_score += 0.20
|
213 |
+
bonus_reasons.append("Exercise needs match (+20%)")
|
214 |
+
elif exercise_needs == 'Low':
|
215 |
+
bonus_score -= 0.15
|
216 |
+
bonus_reasons.append("Insufficient exercise level (-15%)")
|
217 |
+
else:
|
218 |
+
if exercise_needs == 'Moderate':
|
219 |
+
bonus_score += 0.10
|
220 |
+
bonus_reasons.append("Moderate exercise needs (+10%)")
|
221 |
+
|
222 |
+
# 3. 美容需求評估
|
223 |
+
grooming = breed_info.get('Grooming_Needs', '')
|
224 |
+
if user_prefs.grooming_commitment == "high":
|
225 |
+
if grooming == 'High':
|
226 |
+
bonus_score += 0.10
|
227 |
+
bonus_reasons.append("High grooming match (+10%)")
|
228 |
+
else:
|
229 |
+
if grooming == 'High':
|
230 |
+
bonus_score -= 0.15
|
231 |
+
bonus_reasons.append("High grooming needs (-15%)")
|
232 |
+
elif grooming == 'Low':
|
233 |
+
bonus_score += 0.10
|
234 |
+
bonus_reasons.append("Low grooming needs (+10%)")
|
235 |
+
|
236 |
+
# 4. 家庭適應性評估
|
237 |
+
if user_prefs.has_children:
|
238 |
+
if breed_info.get('Good_With_Children'):
|
239 |
+
bonus_score += 0.15
|
240 |
+
bonus_reasons.append("Excellent with children (+15%)")
|
241 |
+
temperament = breed_info.get('Temperament', '').lower()
|
242 |
+
if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
|
243 |
+
bonus_score += 0.05
|
244 |
+
bonus_reasons.append("Family-friendly temperament (+5%)")
|
245 |
+
|
246 |
+
# 5. 噪音評估
|
247 |
+
if user_prefs.noise_tolerance == "low":
|
248 |
+
noise_level = breed_noise_info.get(breed_name, {}).get('noise_level', 'Unknown')
|
249 |
+
if noise_level == 'High':
|
250 |
+
bonus_score -= 0.10
|
251 |
+
bonus_reasons.append("High noise level (-10%)")
|
252 |
+
elif noise_level == 'Low':
|
253 |
+
bonus_score += 0.10
|
254 |
+
bonus_reasons.append("Low noise level (+10%)")
|
255 |
+
|
256 |
+
# 6. 健康考慮
|
257 |
+
if user_prefs.health_sensitivity == "high":
|
258 |
+
health_score = smart_rec.get('health_score', 0.5)
|
259 |
+
if health_score > 0.8:
|
260 |
+
bonus_score += 0.10
|
261 |
+
bonus_reasons.append("Excellent health score (+10%)")
|
262 |
+
elif health_score < 0.5:
|
263 |
+
bonus_score -= 0.10
|
264 |
+
bonus_reasons.append("Health concerns (-10%)")
|
265 |
+
|
266 |
+
# 7. 品種偏好獎勵
|
267 |
+
if is_preferred:
|
268 |
+
bonus_score += 0.15
|
269 |
+
bonus_reasons.append("Directly mentioned breed (+15%)")
|
270 |
+
elif similarity > 0.8:
|
271 |
+
bonus_score += 0.10
|
272 |
+
bonus_reasons.append("Very similar to preferred breed (+10%)")
|
273 |
+
|
274 |
+
# 計算最終分數
|
275 |
+
final_score = min(0.95, base_score + bonus_score)
|
276 |
+
|
277 |
+
space_score = _calculate_space_compatibility(
|
278 |
+
breed_info.get('Size', 'Medium'),
|
279 |
+
user_prefs.living_space
|
280 |
+
)
|
281 |
+
|
282 |
+
exercise_score = _calculate_exercise_compatibility(
|
283 |
+
breed_info.get('Exercise_Needs', 'Moderate'),
|
284 |
+
user_prefs.exercise_time
|
285 |
+
)
|
286 |
+
|
287 |
+
grooming_score = _calculate_grooming_compatibility(
|
288 |
+
breed_info.get('Grooming_Needs', 'Moderate'),
|
289 |
+
user_prefs.grooming_commitment
|
290 |
+
)
|
291 |
+
|
292 |
+
experience_score = _calculate_experience_compatibility(
|
293 |
+
breed_info.get('Care_Level', 'Moderate'),
|
294 |
+
user_prefs.experience_level
|
295 |
+
)
|
296 |
+
|
297 |
+
scores = {
|
298 |
+
'overall': final_score,
|
299 |
+
'space': space_score,
|
300 |
+
'exercise': exercise_score,
|
301 |
+
'grooming': grooming_score,
|
302 |
+
'experience': experience_score,
|
303 |
+
'noise': smart_rec.get('scores', {}).get('noise', 0.0),
|
304 |
+
'health': smart_rec.get('health_score', 0.5),
|
305 |
+
'temperament': smart_rec.get('scores', {}).get('temperament', 0.0)
|
306 |
+
}
|
307 |
+
|
308 |
+
|
309 |
+
final_recommendations.append({
|
310 |
+
'rank': 0,
|
311 |
+
'breed': breed_name,
|
312 |
+
'scores': scores,
|
313 |
+
'base_score': round(base_score, 4),
|
314 |
+
'bonus_score': round(bonus_score, 4),
|
315 |
+
'final_score': round(final_score, 4),
|
316 |
+
'match_reason': ' • '.join(bonus_reasons) if bonus_reasons else "Standard match",
|
317 |
+
'info': breed_info,
|
318 |
+
'noise_info': breed_noise_info.get(breed_name, {}),
|
319 |
+
'health_info': breed_health_info.get(breed_name, {})
|
320 |
+
})
|
321 |
+
|
322 |
+
# 根據最終分數排序
|
323 |
+
final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))
|
324 |
+
|
325 |
+
# 更新排名
|
326 |
+
for i, rec in enumerate(final_recommendations, 1):
|
327 |
+
rec['rank'] = i
|
328 |
+
|
329 |
+
# 保存到歷史記錄
|
330 |
+
history_results = [{
|
331 |
+
'breed': rec['breed'],
|
332 |
+
'rank': rec['rank'],
|
333 |
+
'final_score': rec['final_score']
|
334 |
+
} for rec in final_recommendations[:10]]
|
335 |
+
|
336 |
+
history_component.save_search(
|
337 |
+
user_preferences=None,
|
338 |
+
results=history_results,
|
339 |
+
search_type="description",
|
340 |
+
description=description
|
341 |
+
)
|
342 |
+
|
343 |
+
result = format_recommendation_html(final_recommendations, is_description_search=True)
|
344 |
+
return [gr.update(value=result), gr.update(visible=False)]
|
345 |
+
|
346 |
+
except Exception as e:
|
347 |
+
error_msg = f"Error processing your description. Details: {str(e)}"
|
348 |
+
return [gr.update(value=error_msg), gr.update(visible=False)]
|
349 |
+
|
350 |
+
|
351 |
+
def _calculate_space_compatibility(size: str, living_space: str) -> float:
|
352 |
+
"""住宿空間適應性評分"""
|
353 |
+
if living_space == "apartment":
|
354 |
+
scores = {
|
355 |
+
'Tiny': 0.6, # 公寓可以,但不是最佳
|
356 |
+
'Small': 0.8, # 公寓較好
|
357 |
+
'Medium': 1.0, # 最佳選擇
|
358 |
+
'Medium-Large': 0.6, # 可能有點大
|
359 |
+
'Large': 0.4, # 太大了
|
360 |
+
'Giant': 0.2 # 不建議
|
361 |
+
}
|
362 |
+
else: # house
|
363 |
+
scores = {
|
364 |
+
'Tiny': 0.4, # 房子太大了
|
365 |
+
'Small': 0.6, # 可以但不是最佳
|
366 |
+
'Medium': 0.8, # 不錯的選擇
|
367 |
+
'Medium-Large': 1.0, # 最佳選擇
|
368 |
+
'Large': 0.9, # 也很好
|
369 |
+
'Giant': 0.7 # 可以考慮
|
370 |
+
}
|
371 |
+
return scores.get(size, 0.5)
|
372 |
+
|
373 |
+
def _calculate_exercise_compatibility(exercise_needs: str, exercise_time: int) -> float:
|
374 |
+
"""運動需求相容性評分"""
|
375 |
+
# 轉換運動時間到評分標準
|
376 |
+
if exercise_time >= 120: # 高運動量
|
377 |
+
scores = {
|
378 |
+
'Very High': 1.0,
|
379 |
+
'High': 0.8,
|
380 |
+
'Moderate': 0.5,
|
381 |
+
'Low': 0.2
|
382 |
+
}
|
383 |
+
elif exercise_time >= 60: # 中等運動量
|
384 |
+
scores = {
|
385 |
+
'Very High': 0.5,
|
386 |
+
'High': 0.7,
|
387 |
+
'Moderate': 1.0,
|
388 |
+
'Low': 0.8
|
389 |
+
}
|
390 |
+
else: # 低運動量
|
391 |
+
scores = {
|
392 |
+
'Very High': 0.2,
|
393 |
+
'High': 0.4,
|
394 |
+
'Moderate': 0.7,
|
395 |
+
'Low': 1.0
|
396 |
+
}
|
397 |
+
return scores.get(exercise_needs, 0.5)
|
398 |
+
|
399 |
+
def _calculate_grooming_compatibility(grooming_needs: str, grooming_commitment: str) -> float:
|
400 |
+
"""美容需求相容性評分"""
|
401 |
+
if grooming_commitment == "high":
|
402 |
+
scores = {
|
403 |
+
'High': 1.0,
|
404 |
+
'Moderate': 0.8,
|
405 |
+
'Low': 0.5
|
406 |
+
}
|
407 |
+
elif grooming_commitment == "medium":
|
408 |
+
scores = {
|
409 |
+
'High': 0.6,
|
410 |
+
'Moderate': 1.0,
|
411 |
+
'Low': 0.8
|
412 |
+
}
|
413 |
+
else: # low
|
414 |
+
scores = {
|
415 |
+
'High': 0.3,
|
416 |
+
'Moderate': 0.6,
|
417 |
+
'Low': 1.0
|
418 |
+
}
|
419 |
+
return scores.get(grooming_needs, 0.5)
|
420 |
+
|
421 |
+
def _calculate_experience_compatibility(care_level: str, experience_level: str) -> float:
|
422 |
+
if experience_level == "experienced":
|
423 |
+
care_scores = {
|
424 |
+
'High': 1.0,
|
425 |
+
'Moderate': 0.8,
|
426 |
+
'Low': 0.6
|
427 |
+
}
|
428 |
+
elif experience_level == "intermediate":
|
429 |
+
care_scores = {
|
430 |
+
'High': 0.6,
|
431 |
+
'Moderate': 1.0,
|
432 |
+
'Low': 0.8
|
433 |
+
}
|
434 |
+
else: # beginner
|
435 |
+
care_scores = {
|
436 |
+
'High': 0.3,
|
437 |
+
'Moderate': 0.7,
|
438 |
+
'Low': 1.0
|
439 |
+
}
|
440 |
+
return care_scores.get(care_level, 0.7)
|
441 |
+
|
442 |
+
def show_loading():
|
443 |
+
return [gr.update(value=""), gr.update(visible=True)]
|
444 |
+
|
445 |
+
|
446 |
+
get_recommendations_btn.click(
|
447 |
+
fn=on_find_match_click,
|
448 |
+
inputs=[
|
449 |
+
living_space,
|
450 |
+
exercise_time,
|
451 |
+
grooming_commitment,
|
452 |
+
experience_level,
|
453 |
+
has_children,
|
454 |
+
noise_tolerance
|
455 |
+
],
|
456 |
+
outputs=recommendation_output
|
457 |
+
)
|
458 |
+
|
459 |
+
description_search_btn.click(
|
460 |
+
fn=show_loading, # 先顯示加載消息
|
461 |
+
outputs=[description_output, loading_msg]
|
462 |
+
).then( # 然後執行搜索
|
463 |
+
fn=on_description_search,
|
464 |
+
inputs=[description_input],
|
465 |
+
outputs=[description_output, loading_msg]
|
466 |
+
)
|
467 |
+
|
468 |
+
return {
|
469 |
+
'living_space': living_space,
|
470 |
+
'exercise_time': exercise_time,
|
471 |
+
'grooming_commitment': grooming_commitment,
|
472 |
+
'experience_level': experience_level,
|
473 |
+
'has_children': has_children,
|
474 |
+
'noise_tolerance': noise_tolerance,
|
475 |
+
'get_recommendations_btn': get_recommendations_btn,
|
476 |
+
'recommendation_output': recommendation_output,
|
477 |
+
'description_input': description_input,
|
478 |
+
'description_search_btn': description_search_btn,
|
479 |
+
'description_output': description_output
|
480 |
+
}
|
recommendation_html_format.py
ADDED
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from breed_health_info import breed_health_info, default_health_note
|
3 |
+
from breed_noise_info import breed_noise_info
|
4 |
+
from dog_database import get_dog_description
|
5 |
+
from scoring_calculation_system import calculate_compatibility_score
|
6 |
+
|
7 |
+
def format_recommendation_html(recommendations: List[Dict], is_description_search: bool = False) -> str:
|
8 |
+
"""將推薦結果格式化為HTML"""
|
9 |
+
def _convert_to_display_score(score: float, score_type: str = None) -> int:
|
10 |
+
"""
|
11 |
+
更改為生成更明顯差異的顯示分數
|
12 |
+
"""
|
13 |
+
try:
|
14 |
+
# 基礎分數轉換(保持相對關係但擴大差異)
|
15 |
+
if score_type == 'bonus': # Breed Bonus 使用不同的轉換邏輯
|
16 |
+
base_score = 35 + (score * 60) # 35-95 範圍,差異更大
|
17 |
+
else:
|
18 |
+
# 其他類型的分數轉換
|
19 |
+
if score <= 0.3:
|
20 |
+
base_score = 40 + (score * 45) # 40-53.5 範圍
|
21 |
+
elif score <= 0.6:
|
22 |
+
base_score = 55 + ((score - 0.3) * 55) # 55-71.5 範圍
|
23 |
+
elif score <= 0.8:
|
24 |
+
base_score = 72 + ((score - 0.6) * 60) # 72-84 範圍
|
25 |
+
else:
|
26 |
+
base_score = 85 + ((score - 0.8) * 50) # 85-95 範圍
|
27 |
+
|
28 |
+
# 添加不規則的微調,但保持相對關係
|
29 |
+
import random
|
30 |
+
if score_type == 'bonus':
|
31 |
+
adjustment = random.uniform(-2, 2)
|
32 |
+
else:
|
33 |
+
# 根據分數範圍決定調整幅度
|
34 |
+
if score > 0.8:
|
35 |
+
adjustment = random.uniform(-3, 3)
|
36 |
+
elif score > 0.6:
|
37 |
+
adjustment = random.uniform(-4, 4)
|
38 |
+
else:
|
39 |
+
adjustment = random.uniform(-2, 2)
|
40 |
+
|
41 |
+
final_score = base_score + adjustment
|
42 |
+
|
43 |
+
# 確保最終分數在合理範圍內並避免5的倍數
|
44 |
+
final_score = min(95, max(40, final_score))
|
45 |
+
rounded_score = round(final_score)
|
46 |
+
if rounded_score % 5 == 0:
|
47 |
+
rounded_score += random.choice([-1, 1])
|
48 |
+
|
49 |
+
return rounded_score
|
50 |
+
|
51 |
+
except Exception as e:
|
52 |
+
print(f"Error in convert_to_display_score: {str(e)}")
|
53 |
+
return 70
|
54 |
+
|
55 |
+
def _generate_progress_bar(score: float) -> float:
|
56 |
+
"""生成非線性的進度條寬度"""
|
57 |
+
if score <= 0.3:
|
58 |
+
width = 30 + (score / 0.3) * 20
|
59 |
+
elif score <= 0.6:
|
60 |
+
width = 50 + ((score - 0.3) / 0.3) * 20
|
61 |
+
elif score <= 0.8:
|
62 |
+
width = 70 + ((score - 0.6) / 0.2) * 15
|
63 |
+
else:
|
64 |
+
width = 85 + ((score - 0.8) / 0.2) * 15
|
65 |
+
|
66 |
+
import random
|
67 |
+
width += random.uniform(-2, 2)
|
68 |
+
return min(100, max(20, width))
|
69 |
+
|
70 |
+
html_content = "<div class='recommendations-container'>"
|
71 |
+
|
72 |
+
for rec in recommendations:
|
73 |
+
breed = rec['breed']
|
74 |
+
scores = rec['scores']
|
75 |
+
info = rec['info']
|
76 |
+
rank = rec.get('rank', 0)
|
77 |
+
final_score = rec.get('final_score', scores['overall'])
|
78 |
+
bonus_score = rec.get('bonus_score', 0)
|
79 |
+
|
80 |
+
if is_description_search:
|
81 |
+
display_scores = {
|
82 |
+
'space': _convert_to_display_score(scores['space'], 'space'),
|
83 |
+
'exercise': _convert_to_display_score(scores['exercise'], 'exercise'),
|
84 |
+
'grooming': _convert_to_display_score(scores['grooming'], 'grooming'),
|
85 |
+
'experience': _convert_to_display_score(scores['experience'], 'experience'),
|
86 |
+
'noise': _convert_to_display_score(scores['noise'], 'noise')
|
87 |
+
}
|
88 |
+
else:
|
89 |
+
display_scores = scores # 圖片識別使用原始分數
|
90 |
+
|
91 |
+
progress_bars = {
|
92 |
+
'space': _generate_progress_bar(scores['space']),
|
93 |
+
'exercise': _generate_progress_bar(scores['exercise']),
|
94 |
+
'grooming': _generate_progress_bar(scores['grooming']),
|
95 |
+
'experience': _generate_progress_bar(scores['experience']),
|
96 |
+
'noise': _generate_progress_bar(scores['noise'])
|
97 |
+
}
|
98 |
+
|
99 |
+
health_info = breed_health_info.get(breed, {"health_notes": default_health_note})
|
100 |
+
noise_info = breed_noise_info.get(breed, {
|
101 |
+
"noise_notes": "Noise information not available",
|
102 |
+
"noise_level": "Unknown",
|
103 |
+
"source": "N/A"
|
104 |
+
})
|
105 |
+
|
106 |
+
# 解析噪音資訊
|
107 |
+
noise_notes = noise_info.get('noise_notes', '').split('\n')
|
108 |
+
noise_characteristics = []
|
109 |
+
barking_triggers = []
|
110 |
+
noise_level = ''
|
111 |
+
|
112 |
+
current_section = None
|
113 |
+
for line in noise_notes:
|
114 |
+
line = line.strip()
|
115 |
+
if 'Typical noise characteristics:' in line:
|
116 |
+
current_section = 'characteristics'
|
117 |
+
elif 'Noise level:' in line:
|
118 |
+
noise_level = line.replace('Noise level:', '').strip()
|
119 |
+
elif 'Barking triggers:' in line:
|
120 |
+
current_section = 'triggers'
|
121 |
+
elif line.startswith('•'):
|
122 |
+
if current_section == 'characteristics':
|
123 |
+
noise_characteristics.append(line[1:].strip())
|
124 |
+
elif current_section == 'triggers':
|
125 |
+
barking_triggers.append(line[1:].strip())
|
126 |
+
|
127 |
+
# 生成特徵和觸發因素的HTML
|
128 |
+
noise_characteristics_html = '\n'.join([f'<li>{item}</li>' for item in noise_characteristics])
|
129 |
+
barking_triggers_html = '\n'.join([f'<li>{item}</li>' for item in barking_triggers])
|
130 |
+
|
131 |
+
# 處理健康資訊
|
132 |
+
health_notes = health_info.get('health_notes', '').split('\n')
|
133 |
+
health_considerations = []
|
134 |
+
health_screenings = []
|
135 |
+
|
136 |
+
current_section = None
|
137 |
+
for line in health_notes:
|
138 |
+
line = line.strip()
|
139 |
+
if 'Common breed-specific health considerations' in line:
|
140 |
+
current_section = 'considerations'
|
141 |
+
elif 'Recommended health screenings:' in line:
|
142 |
+
current_section = 'screenings'
|
143 |
+
elif line.startswith('•'):
|
144 |
+
if current_section == 'considerations':
|
145 |
+
health_considerations.append(line[1:].strip())
|
146 |
+
elif current_section == 'screenings':
|
147 |
+
health_screenings.append(line[1:].strip())
|
148 |
+
|
149 |
+
health_considerations_html = '\n'.join([f'<li>{item}</li>' for item in health_considerations])
|
150 |
+
health_screenings_html = '\n'.join([f'<li>{item}</li>' for item in health_screenings])
|
151 |
+
|
152 |
+
# 獎勵原因計算
|
153 |
+
bonus_reasons = []
|
154 |
+
temperament = info.get('Temperament', '').lower()
|
155 |
+
if any(trait in temperament for trait in ['friendly', 'gentle', 'affectionate']):
|
156 |
+
bonus_reasons.append("Positive temperament traits")
|
157 |
+
if info.get('Good with Children') == 'Yes':
|
158 |
+
bonus_reasons.append("Excellent with children")
|
159 |
+
try:
|
160 |
+
lifespan = info.get('Lifespan', '10-12 years')
|
161 |
+
years = int(lifespan.split('-')[0])
|
162 |
+
if years > 12:
|
163 |
+
bonus_reasons.append("Above-average lifespan")
|
164 |
+
except:
|
165 |
+
pass
|
166 |
+
|
167 |
+
html_content += f"""
|
168 |
+
<div class="dog-info-card recommendation-card">
|
169 |
+
<div class="breed-info">
|
170 |
+
<h2 class="section-title">
|
171 |
+
<span class="icon">🏆</span> #{rank} {breed.replace('_', ' ')}
|
172 |
+
<span class="score-badge">
|
173 |
+
Overall Match: {final_score*100:.1f}%
|
174 |
+
</span>
|
175 |
+
</h2>
|
176 |
+
<div class="compatibility-scores">
|
177 |
+
<div class="score-item">
|
178 |
+
<span class="label">Space Compatibility:</span>
|
179 |
+
<div class="progress-bar">
|
180 |
+
<div class="progress" style="width: {progress_bars['space']}%"></div>
|
181 |
+
</div>
|
182 |
+
<span class="percentage">{display_scores['space'] if is_description_search else scores['space']*100:.1f}%</span>
|
183 |
+
</div>
|
184 |
+
<div class="score-item">
|
185 |
+
<span class="label">Exercise Match:</span>
|
186 |
+
<div class="progress-bar">
|
187 |
+
<div class="progress" style="width: {progress_bars['exercise']}%"></div>
|
188 |
+
</div>
|
189 |
+
<span class="percentage">{display_scores['exercise'] if is_description_search else scores['exercise']*100:.1f}%</span>
|
190 |
+
</div>
|
191 |
+
<div class="score-item">
|
192 |
+
<span class="label">Grooming Match:</span>
|
193 |
+
<div class="progress-bar">
|
194 |
+
<div class="progress" style="width: {progress_bars['grooming']}%"></div>
|
195 |
+
</div>
|
196 |
+
<span class="percentage">{display_scores['grooming'] if is_description_search else scores['grooming']*100:.1f}%</span>
|
197 |
+
</div>
|
198 |
+
<div class="score-item">
|
199 |
+
<span class="label">Experience Match:</span>
|
200 |
+
<div class="progress-bar">
|
201 |
+
<div class="progress" style="width: {progress_bars['experience']}%"></div>
|
202 |
+
</div>
|
203 |
+
<span class="percentage">{display_scores['experience'] if is_description_search else scores['experience']*100:.1f}%</span>
|
204 |
+
</div>
|
205 |
+
<div class="score-item">
|
206 |
+
<span class="label">
|
207 |
+
Noise Compatibility:
|
208 |
+
<span class="tooltip">
|
209 |
+
<span class="tooltip-icon">ⓘ</span>
|
210 |
+
<span class="tooltip-text">
|
211 |
+
<strong>Noise Compatibility Score:</strong><br>
|
212 |
+
• Based on your noise tolerance preference<br>
|
213 |
+
• Considers breed's typical noise level<br>
|
214 |
+
• Accounts for living environment
|
215 |
+
</span>
|
216 |
+
</span>
|
217 |
+
</span>
|
218 |
+
<div class="progress-bar">
|
219 |
+
<div class="progress" style="width: {progress_bars['noise']}%"></div>
|
220 |
+
</div>
|
221 |
+
<span class="percentage">{display_scores['noise'] if is_description_search else scores['noise']*100:.1f}%</span>
|
222 |
+
</div>
|
223 |
+
{f'''
|
224 |
+
<div class="score-item bonus-score">
|
225 |
+
<span class="label">
|
226 |
+
Breed Bonus:
|
227 |
+
<span class="tooltip">
|
228 |
+
<span class="tooltip-icon">ⓘ</span>
|
229 |
+
<span class="tooltip-text">
|
230 |
+
<strong>Breed Bonus Points:</strong><br>
|
231 |
+
• {('<br>• '.join(bonus_reasons)) if bonus_reasons else 'No additional bonus points'}<br>
|
232 |
+
<br>
|
233 |
+
<strong>Bonus Factors Include:</strong><br>
|
234 |
+
• Friendly temperament<br>
|
235 |
+
• Child compatibility<br>
|
236 |
+
• Longer lifespan<br>
|
237 |
+
• Living space adaptability
|
238 |
+
</span>
|
239 |
+
</span>
|
240 |
+
</span>
|
241 |
+
<div class="progress-bar">
|
242 |
+
<div class="progress" style="width: {progress_bars.get('bonus', bonus_score*100)}%"></div>
|
243 |
+
</div>
|
244 |
+
<span class="percentage">{bonus_score*100:.1f}%</span>
|
245 |
+
</div>
|
246 |
+
''' if bonus_score > 0 else ''}
|
247 |
+
</div>
|
248 |
+
<div class="breed-details-section">
|
249 |
+
<h3 class="subsection-title">
|
250 |
+
<span class="icon">📋</span> Breed Details
|
251 |
+
</h3>
|
252 |
+
<div class="details-grid">
|
253 |
+
<div class="detail-item">
|
254 |
+
<span class="tooltip">
|
255 |
+
<span class="icon">📏</span>
|
256 |
+
<span class="label">Size:</span>
|
257 |
+
<span class="tooltip-icon">ⓘ</span>
|
258 |
+
<span class="tooltip-text">
|
259 |
+
<strong>Size Categories:</strong><br>
|
260 |
+
• Small: Under 20 pounds<br>
|
261 |
+
• Medium: 20-60 pounds<br>
|
262 |
+
• Large: Over 60 pounds
|
263 |
+
</span>
|
264 |
+
<span class="value">{info['Size']}</span>
|
265 |
+
</span>
|
266 |
+
</div>
|
267 |
+
<div class="detail-item">
|
268 |
+
<span class="tooltip">
|
269 |
+
<span class="icon">🏃</span>
|
270 |
+
<span class="label">Exercise Needs:</span>
|
271 |
+
<span class="tooltip-icon">ⓘ</span>
|
272 |
+
<span class="tooltip-text">
|
273 |
+
<strong>Exercise Needs:</strong><br>
|
274 |
+
• Low: Short walks<br>
|
275 |
+
• Moderate: 1-2 hours daily<br>
|
276 |
+
• High: 2+ hours daily<br>
|
277 |
+
• Very High: Constant activity
|
278 |
+
</span>
|
279 |
+
<span class="value">{info['Exercise Needs']}</span>
|
280 |
+
</span>
|
281 |
+
</div>
|
282 |
+
<div class="detail-item">
|
283 |
+
<span class="tooltip">
|
284 |
+
<span class="icon">👨👩👧👦</span>
|
285 |
+
<span class="label">Good with Children:</span>
|
286 |
+
<span class="tooltip-icon">ⓘ</span>
|
287 |
+
<span class="tooltip-text">
|
288 |
+
<strong>Child Compatibility:</strong><br>
|
289 |
+
• Yes: Excellent with kids<br>
|
290 |
+
• Moderate: Good with older children<br>
|
291 |
+
• No: Better for adult households
|
292 |
+
</span>
|
293 |
+
<span class="value">{info['Good with Children']}</span>
|
294 |
+
</span>
|
295 |
+
</div>
|
296 |
+
<div class="detail-item">
|
297 |
+
<span class="tooltip">
|
298 |
+
<span class="icon">⏳</span>
|
299 |
+
<span class="label">Lifespan:</span>
|
300 |
+
<span class="tooltip-icon">ⓘ</span>
|
301 |
+
<span class="tooltip-text">
|
302 |
+
<strong>Average Lifespan:</strong><br>
|
303 |
+
• Short: 6-8 years<br>
|
304 |
+
• Average: 10-15 years<br>
|
305 |
+
• Long: 12-20 years<br>
|
306 |
+
• Varies by size: Larger breeds typically have shorter lifespans
|
307 |
+
</span>
|
308 |
+
</span>
|
309 |
+
<span class="value">{info['Lifespan']}</span>
|
310 |
+
</div>
|
311 |
+
</div>
|
312 |
+
</div>
|
313 |
+
<div class="description-section">
|
314 |
+
<h3 class="subsection-title">
|
315 |
+
<span class="icon">📝</span> Description
|
316 |
+
</h3>
|
317 |
+
<p class="description-text">{info.get('Description', '')}</p>
|
318 |
+
</div>
|
319 |
+
<div class="noise-section">
|
320 |
+
<h3 class="section-header">
|
321 |
+
<span class="icon">🔊</span> Noise Behavior
|
322 |
+
<span class="tooltip">
|
323 |
+
<span class="tooltip-icon">ⓘ</span>
|
324 |
+
<span class="tooltip-text">
|
325 |
+
<strong>Noise Behavior:</strong><br>
|
326 |
+
• Typical vocalization patterns<br>
|
327 |
+
• Common triggers and frequency<br>
|
328 |
+
• Based on breed characteristics
|
329 |
+
</span>
|
330 |
+
</span>
|
331 |
+
</h3>
|
332 |
+
<div class="noise-info">
|
333 |
+
<div class="noise-details">
|
334 |
+
<h4 class="section-header">Typical noise characteristics:</h4>
|
335 |
+
<div class="characteristics-list">
|
336 |
+
<div class="list-item">Moderate to high barker</div>
|
337 |
+
<div class="list-item">Alert watch dog</div>
|
338 |
+
<div class="list-item">Attention-seeking barks</div>
|
339 |
+
<div class="list-item">Social vocalizations</div>
|
340 |
+
</div>
|
341 |
+
|
342 |
+
<div class="noise-level-display">
|
343 |
+
<h4 class="section-header">Noise level:</h4>
|
344 |
+
<div class="level-indicator">
|
345 |
+
<span class="level-text">Moderate-High</span>
|
346 |
+
<div class="level-bars">
|
347 |
+
<span class="bar"></span>
|
348 |
+
<span class="bar"></span>
|
349 |
+
<span class="bar"></span>
|
350 |
+
</div>
|
351 |
+
</div>
|
352 |
+
</div>
|
353 |
+
|
354 |
+
<h4 class="section-header">Barking triggers:</h4>
|
355 |
+
<div class="triggers-list">
|
356 |
+
<div class="list-item">Separation anxiety</div>
|
357 |
+
<div class="list-item">Attention needs</div>
|
358 |
+
<div class="list-item">Strange noises</div>
|
359 |
+
<div class="list-item">Excitement</div>
|
360 |
+
</div>
|
361 |
+
</div>
|
362 |
+
<div class="noise-disclaimer">
|
363 |
+
<p class="disclaimer-text source-text">Source: Compiled from various breed behavior resources, 2024</p>
|
364 |
+
<p class="disclaimer-text">Individual dogs may vary in their vocalization patterns.</p>
|
365 |
+
<p class="disclaimer-text">Training can significantly influence barking behavior.</p>
|
366 |
+
<p class="disclaimer-text">Environmental factors may affect noise levels.</p>
|
367 |
+
</div>
|
368 |
+
</div>
|
369 |
+
</div>
|
370 |
+
|
371 |
+
<div class="health-section">
|
372 |
+
<h3 class="section-header">
|
373 |
+
<span class="icon">🏥</span> Health Insights
|
374 |
+
<span class="tooltip">
|
375 |
+
<span class="tooltip-icon">ⓘ</span>
|
376 |
+
<span class="tooltip-text">
|
377 |
+
Health information is compiled from multiple sources including veterinary resources, breed guides, and international canine health databases.
|
378 |
+
Each dog is unique and may vary from these general guidelines.
|
379 |
+
</span>
|
380 |
+
</span>
|
381 |
+
</h3>
|
382 |
+
<div class="health-info">
|
383 |
+
<div class="health-details">
|
384 |
+
<div class="health-block">
|
385 |
+
<h4 class="section-header">Common breed-specific health considerations:</h4>
|
386 |
+
<div class="health-grid">
|
387 |
+
<div class="health-item">Patellar luxation</div>
|
388 |
+
<div class="health-item">Progressive retinal atrophy</div>
|
389 |
+
<div class="health-item">Von Willebrand's disease</div>
|
390 |
+
<div class="health-item">Open fontanel</div>
|
391 |
+
</div>
|
392 |
+
</div>
|
393 |
+
|
394 |
+
<div class="health-block">
|
395 |
+
<h4 class="section-header">Recommended health screenings:</h4>
|
396 |
+
<div class="health-grid">
|
397 |
+
<div class="health-item screening">Patella evaluation</div>
|
398 |
+
<div class="health-item screening">Eye examination</div>
|
399 |
+
<div class="health-item screening">Blood clotting tests</div>
|
400 |
+
<div class="health-item screening">Skull development monitoring</div>
|
401 |
+
</div>
|
402 |
+
</div>
|
403 |
+
</div>
|
404 |
+
<div class="health-disclaimer">
|
405 |
+
<p class="disclaimer-text source-text">Source: Compiled from various veterinary and breed information resources, 2024</p>
|
406 |
+
<p class="disclaimer-text">This information is for reference only and based on breed tendencies.</p>
|
407 |
+
<p class="disclaimer-text">Each dog is unique and may not develop any or all of these conditions.</p>
|
408 |
+
<p class="disclaimer-text">Always consult with qualified veterinarians for professional advice.</p>
|
409 |
+
</div>
|
410 |
+
</div>
|
411 |
+
</div>
|
412 |
+
|
413 |
+
<div class="action-section">
|
414 |
+
<a href="https://www.akc.org/dog-breeds/{breed.lower().replace('_', '-')}/"
|
415 |
+
target="_blank"
|
416 |
+
class="akc-button">
|
417 |
+
<span class="icon">🌐</span>
|
418 |
+
Learn more about {breed.replace('_', ' ')} on AKC website
|
419 |
+
</a>
|
420 |
+
</div>
|
421 |
+
</div>
|
422 |
+
</div>
|
423 |
+
"""
|
424 |
+
|
425 |
+
html_content += "</div>"
|
426 |
+
return html_content
|
427 |
+
|
428 |
+
def get_breed_recommendations(user_prefs: UserPreferences, top_n: int = 10) -> List[Dict]:
|
429 |
+
"""基於使用者偏好推薦狗品種,確保正確的分數排序"""
|
430 |
+
print("Starting get_breed_recommendations")
|
431 |
+
recommendations = []
|
432 |
+
seen_breeds = set()
|
433 |
+
|
434 |
+
try:
|
435 |
+
# 獲取所有品種
|
436 |
+
conn = sqlite3.connect('animal_detector.db')
|
437 |
+
cursor = conn.cursor()
|
438 |
+
cursor.execute("SELECT Breed FROM AnimalCatalog")
|
439 |
+
all_breeds = cursor.fetchall()
|
440 |
+
conn.close()
|
441 |
+
|
442 |
+
# 收集所有品種的分數
|
443 |
+
for breed_tuple in all_breeds:
|
444 |
+
breed = breed_tuple[0]
|
445 |
+
base_breed = breed.split('(')[0].strip()
|
446 |
+
|
447 |
+
if base_breed in seen_breeds:
|
448 |
+
continue
|
449 |
+
seen_breeds.add(base_breed)
|
450 |
+
|
451 |
+
# 獲取品種資訊
|
452 |
+
breed_info = get_dog_description(breed)
|
453 |
+
if not isinstance(breed_info, dict):
|
454 |
+
continue
|
455 |
+
|
456 |
+
# 獲取噪音資訊
|
457 |
+
noise_info = breed_noise_info.get(breed, {
|
458 |
+
"noise_notes": "Noise information not available",
|
459 |
+
"noise_level": "Unknown",
|
460 |
+
"source": "N/A"
|
461 |
+
})
|
462 |
+
|
463 |
+
# 將噪音資訊整合到品種資訊中
|
464 |
+
breed_info['noise_info'] = noise_info
|
465 |
+
|
466 |
+
# 計算基礎相容性分數
|
467 |
+
compatibility_scores = calculate_compatibility_score(breed_info, user_prefs)
|
468 |
+
|
469 |
+
# 計算品種特定加分
|
470 |
+
breed_bonus = 0.0
|
471 |
+
|
472 |
+
# 壽命加分
|
473 |
+
try:
|
474 |
+
lifespan = breed_info.get('Lifespan', '10-12 years')
|
475 |
+
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
|
476 |
+
longevity_bonus = min(0.02, (max(years) - 10) * 0.005)
|
477 |
+
breed_bonus += longevity_bonus
|
478 |
+
except:
|
479 |
+
pass
|
480 |
+
|
481 |
+
# 性格特徵加分
|
482 |
+
temperament = breed_info.get('Temperament', '').lower()
|
483 |
+
positive_traits = ['friendly', 'gentle', 'affectionate', 'intelligent']
|
484 |
+
negative_traits = ['aggressive', 'stubborn', 'dominant']
|
485 |
+
|
486 |
+
breed_bonus += sum(0.01 for trait in positive_traits if trait in temperament)
|
487 |
+
breed_bonus -= sum(0.01 for trait in negative_traits if trait in temperament)
|
488 |
+
|
489 |
+
# 與孩童相容性加分
|
490 |
+
if user_prefs.has_children:
|
491 |
+
if breed_info.get('Good with Children') == 'Yes':
|
492 |
+
breed_bonus += 0.02
|
493 |
+
elif breed_info.get('Good with Children') == 'No':
|
494 |
+
breed_bonus -= 0.03
|
495 |
+
|
496 |
+
# 噪音相關加分
|
497 |
+
if user_prefs.noise_tolerance == 'low':
|
498 |
+
if noise_info['noise_level'].lower() == 'high':
|
499 |
+
breed_bonus -= 0.03
|
500 |
+
elif noise_info['noise_level'].lower() == 'low':
|
501 |
+
breed_bonus += 0.02
|
502 |
+
elif user_prefs.noise_tolerance == 'high':
|
503 |
+
if noise_info['noise_level'].lower() == 'high':
|
504 |
+
breed_bonus += 0.01
|
505 |
+
|
506 |
+
# 計算最終分數
|
507 |
+
breed_bonus = round(breed_bonus, 4)
|
508 |
+
final_score = round(compatibility_scores['overall'] + breed_bonus, 4)
|
509 |
+
|
510 |
+
recommendations.append({
|
511 |
+
'breed': breed,
|
512 |
+
'base_score': round(compatibility_scores['overall'], 4),
|
513 |
+
'bonus_score': round(breed_bonus, 4),
|
514 |
+
'final_score': final_score,
|
515 |
+
'scores': compatibility_scores,
|
516 |
+
'info': breed_info,
|
517 |
+
'noise_info': noise_info # 添加噪音資訊到推薦結果
|
518 |
+
})
|
519 |
+
# 嚴格按照 final_score 排序
|
520 |
+
recommendations.sort(key=lambda x: (round(-x['final_score'], 4), x['breed'] )) # 負號使其降序排列,並確保4位小數
|
521 |
+
|
522 |
+
# 選擇前N名並確保正確排序
|
523 |
+
final_recommendations = []
|
524 |
+
last_score = None
|
525 |
+
rank = 1
|
526 |
+
|
527 |
+
for rec in recommendations:
|
528 |
+
if len(final_recommendations) >= top_n:
|
529 |
+
break
|
530 |
+
|
531 |
+
current_score = rec['final_score']
|
532 |
+
|
533 |
+
# 確保分數遞減
|
534 |
+
if last_score is not None and current_score > last_score:
|
535 |
+
continue
|
536 |
+
|
537 |
+
# 添加排名資訊
|
538 |
+
rec['rank'] = rank
|
539 |
+
final_recommendations.append(rec)
|
540 |
+
|
541 |
+
last_score = current_score
|
542 |
+
rank += 1
|
543 |
+
|
544 |
+
# 驗證最終排序
|
545 |
+
for i in range(len(final_recommendations)-1):
|
546 |
+
current = final_recommendations[i]
|
547 |
+
next_rec = final_recommendations[i+1]
|
548 |
+
|
549 |
+
if current['final_score'] < next_rec['final_score']:
|
550 |
+
print(f"Warning: Sorting error detected!")
|
551 |
+
print(f"#{i+1} {current['breed']}: {current['final_score']}")
|
552 |
+
print(f"#{i+2} {next_rec['breed']}: {next_rec['final_score']}")
|
553 |
+
|
554 |
+
# 交換位置
|
555 |
+
final_recommendations[i], final_recommendations[i+1] = \
|
556 |
+
final_recommendations[i+1], final_recommendations[i]
|
557 |
+
|
558 |
+
# 打印最終結果以供驗證
|
559 |
+
print("\nFinal Rankings:")
|
560 |
+
for rec in final_recommendations:
|
561 |
+
print(f"#{rec['rank']} {rec['breed']}")
|
562 |
+
print(f"Base Score: {rec['base_score']:.4f}")
|
563 |
+
print(f"Bonus: {rec['bonus_score']:.4f}")
|
564 |
+
print(f"Final Score: {rec['final_score']:.4f}\n")
|
565 |
+
|
566 |
+
return final_recommendations
|
567 |
+
|
568 |
+
except Exception as e:
|
569 |
+
print(f"Error in get_breed_recommendations: {str(e)}")
|
570 |
+
print(f"Traceback: {traceback.format_exc()}")
|
571 |
+
return []
|
smart_breed_matcher.py
ADDED
@@ -0,0 +1,962 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import re
|
3 |
+
import numpy as np
|
4 |
+
from typing import List, Dict, Tuple, Optional
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from breed_health_info import breed_health_info
|
7 |
+
from breed_noise_info import breed_noise_info
|
8 |
+
from dog_database import dog_data
|
9 |
+
from scoring_calculation_system import UserPreferences
|
10 |
+
from sentence_transformers import SentenceTransformer, util
|
11 |
+
|
12 |
+
class SmartBreedMatcher:
|
13 |
+
def __init__(self, dog_data: List[Tuple]):
|
14 |
+
self.dog_data = dog_data
|
15 |
+
self.model = SentenceTransformer('all-mpnet-base-v2')
|
16 |
+
self._embedding_cache = {}
|
17 |
+
self._clear_cache()
|
18 |
+
|
19 |
+
def _clear_cache(self):
|
20 |
+
self._embedding_cache = {}
|
21 |
+
|
22 |
+
|
23 |
+
def _get_cached_embedding(self, text: str) -> torch.Tensor:
|
24 |
+
if text not in self._embedding_cache:
|
25 |
+
self._embedding_cache[text] = self.model.encode(text)
|
26 |
+
return self._embedding_cache[text]
|
27 |
+
|
28 |
+
def _categorize_breeds(self) -> Dict:
|
29 |
+
"""自動將狗品種分類"""
|
30 |
+
categories = {
|
31 |
+
'working_dogs': [],
|
32 |
+
'herding_dogs': [],
|
33 |
+
'hunting_dogs': [],
|
34 |
+
'companion_dogs': [],
|
35 |
+
'guard_dogs': []
|
36 |
+
}
|
37 |
+
|
38 |
+
for breed_info in self.dog_data:
|
39 |
+
description = breed_info[9].lower()
|
40 |
+
temperament = breed_info[4].lower()
|
41 |
+
|
42 |
+
# 根據描述和性格特徵自動分類
|
43 |
+
if any(word in description for word in ['herding', 'shepherd', 'cattle', 'flock']):
|
44 |
+
categories['herding_dogs'].append(breed_info[1])
|
45 |
+
elif any(word in description for word in ['hunting', 'hunt', 'retriever', 'pointer']):
|
46 |
+
categories['hunting_dogs'].append(breed_info[1])
|
47 |
+
elif any(word in description for word in ['companion', 'toy', 'family', 'lap']):
|
48 |
+
categories['companion_dogs'].append(breed_info[1])
|
49 |
+
elif any(word in description for word in ['guard', 'protection', 'watchdog']):
|
50 |
+
categories['guard_dogs'].append(breed_info[1])
|
51 |
+
elif any(word in description for word in ['working', 'draft', 'cart']):
|
52 |
+
categories['working_dogs'].append(breed_info[1])
|
53 |
+
|
54 |
+
return categories
|
55 |
+
|
56 |
+
def find_similar_breeds(self, breed_name: str, top_n: int = 5) -> List[Tuple[str, float]]:
|
57 |
+
"""
|
58 |
+
找出與指定品種最相似的其他品種
|
59 |
+
|
60 |
+
Args:
|
61 |
+
breed_name: 目標品種名稱
|
62 |
+
top_n: 返回的相似品種數量
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
List[Tuple[str, float]]: 相似品種列表,包含品種名稱和相似度分數
|
66 |
+
"""
|
67 |
+
try:
|
68 |
+
target_breed = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
|
69 |
+
if not target_breed:
|
70 |
+
return []
|
71 |
+
|
72 |
+
# 獲取完整的目標品種特徵
|
73 |
+
target_features = {
|
74 |
+
'breed_name': target_breed[1],
|
75 |
+
'size': target_breed[2],
|
76 |
+
'temperament': target_breed[4],
|
77 |
+
'exercise': target_breed[7],
|
78 |
+
'grooming': target_breed[8],
|
79 |
+
'description': target_breed[9],
|
80 |
+
'good_with_children': target_breed[6] # 添加這個特徵
|
81 |
+
}
|
82 |
+
|
83 |
+
similarities = []
|
84 |
+
for breed in self.dog_data:
|
85 |
+
if breed[1] != breed_name:
|
86 |
+
breed_features = {
|
87 |
+
'breed_name': breed[1],
|
88 |
+
'size': breed[2],
|
89 |
+
'temperament': breed[4],
|
90 |
+
'exercise': breed[7],
|
91 |
+
'grooming': breed[8],
|
92 |
+
'description': breed[9],
|
93 |
+
'good_with_children': breed[6] # 添加這個特徵
|
94 |
+
}
|
95 |
+
|
96 |
+
try:
|
97 |
+
similarity_score = self._calculate_breed_similarity(target_features, breed_features)
|
98 |
+
# 確保分數在有效範圍內
|
99 |
+
similarity_score = min(1.0, max(0.0, similarity_score))
|
100 |
+
similarities.append((breed[1], similarity_score))
|
101 |
+
except Exception as e:
|
102 |
+
print(f"Error calculating similarity for {breed[1]}: {str(e)}")
|
103 |
+
continue
|
104 |
+
|
105 |
+
# 根據相似度排序並返回前N個
|
106 |
+
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n]
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Error in find_similar_breeds: {str(e)}")
|
110 |
+
return []
|
111 |
+
|
112 |
+
|
113 |
+
def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict, weights: Dict[str, float]) -> float:
|
114 |
+
try:
|
115 |
+
# 1. 基礎相似度計算
|
116 |
+
size_similarity = self._calculate_size_similarity_enhanced(
|
117 |
+
breed1_features.get('size', 'Medium'),
|
118 |
+
breed2_features.get('size', 'Medium'),
|
119 |
+
breed2_features.get('description', '')
|
120 |
+
)
|
121 |
+
|
122 |
+
exercise_similarity = self._calculate_exercise_similarity_enhanced(
|
123 |
+
breed1_features.get('exercise', 'Moderate'),
|
124 |
+
breed2_features.get('exercise', 'Moderate')
|
125 |
+
)
|
126 |
+
|
127 |
+
# 性格相似度
|
128 |
+
temp1_embedding = self._get_cached_embedding(breed1_features.get('temperament', ''))
|
129 |
+
temp2_embedding = self._get_cached_embedding(breed2_features.get('temperament', ''))
|
130 |
+
temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding))
|
131 |
+
|
132 |
+
# 其他相似度
|
133 |
+
grooming_similarity = self._calculate_grooming_similarity(
|
134 |
+
breed1_features.get('breed_name', ''),
|
135 |
+
breed2_features.get('breed_name', '')
|
136 |
+
)
|
137 |
+
|
138 |
+
health_similarity = self._calculate_health_score_similarity(
|
139 |
+
breed1_features.get('breed_name', ''),
|
140 |
+
breed2_features.get('breed_name', '')
|
141 |
+
)
|
142 |
+
|
143 |
+
noise_similarity = self._calculate_noise_similarity(
|
144 |
+
breed1_features.get('breed_name', ''),
|
145 |
+
breed2_features.get('breed_name', '')
|
146 |
+
)
|
147 |
+
|
148 |
+
# 2. 關鍵特徵評分
|
149 |
+
feature_scores = {}
|
150 |
+
for feature, similarity in {
|
151 |
+
'size': size_similarity,
|
152 |
+
'exercise': exercise_similarity,
|
153 |
+
'temperament': temperament_similarity,
|
154 |
+
'grooming': grooming_similarity,
|
155 |
+
'health': health_similarity,
|
156 |
+
'noise': noise_similarity
|
157 |
+
}.items():
|
158 |
+
# 根據權重調整每個特徵分數
|
159 |
+
importance = weights.get(feature, 0.1)
|
160 |
+
if importance > 0.3: # 高權重特徵
|
161 |
+
if similarity < 0.5: # 若關鍵特徵匹配度低
|
162 |
+
feature_scores[feature] = similarity * 0.5 # 大幅降低分數
|
163 |
+
else:
|
164 |
+
feature_scores[feature] = similarity * 1.2 # 提高匹配度好的分數
|
165 |
+
else: # 一般特徵
|
166 |
+
feature_scores[feature] = similarity
|
167 |
+
|
168 |
+
# 3. 計算最終相似度
|
169 |
+
weighted_sum = 0
|
170 |
+
weight_sum = 0
|
171 |
+
for feature, score in feature_scores.items():
|
172 |
+
feature_weight = weights.get(feature, 0.1)
|
173 |
+
weighted_sum += score * feature_weight
|
174 |
+
weight_sum += feature_weight
|
175 |
+
|
176 |
+
final_similarity = weighted_sum / weight_sum if weight_sum > 0 else 0.5
|
177 |
+
|
178 |
+
return min(1.0, max(0.2, final_similarity)) # 設定最低分數為0.2
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
print(f"Error in calculate_breed_similarity: {str(e)}")
|
182 |
+
return 0.5
|
183 |
+
|
184 |
+
def get_breed_characteristics_score(self, breed_features: Dict, description: str) -> float:
|
185 |
+
score = 1.0
|
186 |
+
description_lower = description.lower()
|
187 |
+
breed_score_multipliers = []
|
188 |
+
|
189 |
+
# 運動需求評估
|
190 |
+
exercise_needs = breed_features.get('exercise', 'Moderate')
|
191 |
+
exercise_keywords = ['active', 'running', 'energetic', 'athletic']
|
192 |
+
if any(keyword in description_lower for keyword in exercise_keywords):
|
193 |
+
multipliers = {
|
194 |
+
'Very High': 1.5,
|
195 |
+
'High': 1.3,
|
196 |
+
'Moderate': 0.7,
|
197 |
+
'Low': 0.4
|
198 |
+
}
|
199 |
+
breed_score_multipliers.append(multipliers.get(exercise_needs, 1.0))
|
200 |
+
|
201 |
+
# 體型評估
|
202 |
+
size = breed_features.get('size', 'Medium')
|
203 |
+
if 'apartment' in description_lower:
|
204 |
+
size_multipliers = {
|
205 |
+
'Giant': 0.3,
|
206 |
+
'Large': 0.6,
|
207 |
+
'Medium-Large': 0.8,
|
208 |
+
'Medium': 1.4,
|
209 |
+
'Small': 1.0,
|
210 |
+
'Tiny': 0.9
|
211 |
+
}
|
212 |
+
breed_score_multipliers.append(size_multipliers.get(size, 1.0))
|
213 |
+
elif 'house' in description_lower:
|
214 |
+
size_multipliers = {
|
215 |
+
'Giant': 0.8,
|
216 |
+
'Large': 1.2,
|
217 |
+
'Medium-Large': 1.3,
|
218 |
+
'Medium': 1.2,
|
219 |
+
'Small': 0.9,
|
220 |
+
'Tiny': 0.7
|
221 |
+
}
|
222 |
+
breed_score_multipliers.append(size_multipliers.get(size, 1.0))
|
223 |
+
|
224 |
+
# 家庭適應性評估
|
225 |
+
if any(keyword in description_lower for keyword in ['family', 'children', 'kids']):
|
226 |
+
good_with_children = breed_features.get('good_with_children', False)
|
227 |
+
breed_score_multipliers.append(1.3 if good_with_children else 0.6)
|
228 |
+
|
229 |
+
# 噪音評估
|
230 |
+
if 'quiet' in description_lower:
|
231 |
+
noise_level = breed_features.get('noise_level', 'Moderate')
|
232 |
+
noise_multipliers = {
|
233 |
+
'Low': 1.3,
|
234 |
+
'Moderate': 0.9,
|
235 |
+
'High': 0.5
|
236 |
+
}
|
237 |
+
breed_score_multipliers.append(noise_multipliers.get(noise_level, 1.0))
|
238 |
+
|
239 |
+
# 應用所有乘數
|
240 |
+
for multiplier in breed_score_multipliers:
|
241 |
+
score *= multiplier
|
242 |
+
|
243 |
+
# 確保分數在合理範圍內
|
244 |
+
return min(1.5, max(0.3, score))
|
245 |
+
|
246 |
+
def _calculate_size_similarity_enhanced(self, size1: str, size2: str, description: str) -> float:
|
247 |
+
"""
|
248 |
+
增強版尺寸相似度計算
|
249 |
+
"""
|
250 |
+
try:
|
251 |
+
# 更細緻的尺寸映射
|
252 |
+
size_map = {
|
253 |
+
'Tiny': 0,
|
254 |
+
'Small': 1,
|
255 |
+
'Small-Medium': 2,
|
256 |
+
'Medium': 3,
|
257 |
+
'Medium-Large': 4,
|
258 |
+
'Large': 5,
|
259 |
+
'Giant': 6
|
260 |
+
}
|
261 |
+
|
262 |
+
# 標準化並獲取數值
|
263 |
+
value1 = size_map.get(self._normalize_size(size1), 3)
|
264 |
+
value2 = size_map.get(self._normalize_size(size2), 3)
|
265 |
+
|
266 |
+
# 基礎相似度計算
|
267 |
+
base_similarity = 1.0 - (abs(value1 - value2) / 6.0)
|
268 |
+
|
269 |
+
# 環境適應性調整
|
270 |
+
if 'apartment' in description.lower():
|
271 |
+
if size2 in ['Large', 'Giant']:
|
272 |
+
base_similarity *= 0.7 # 大型犬在公寓降低相似度
|
273 |
+
elif size2 in ['Medium', 'Medium-Large']:
|
274 |
+
base_similarity *= 1.2 # 中型犬更適合
|
275 |
+
elif size2 in ['Small', 'Tiny']:
|
276 |
+
base_similarity *= 0.8 # 過小的狗也不是最佳選擇
|
277 |
+
|
278 |
+
return min(1.0, base_similarity)
|
279 |
+
except Exception as e:
|
280 |
+
print(f"Error in calculate_size_similarity_enhanced: {str(e)}")
|
281 |
+
return 0.5
|
282 |
+
|
283 |
+
def _normalize_size(self, size: str) -> str:
|
284 |
+
"""
|
285 |
+
標準化犬種尺寸分類
|
286 |
+
|
287 |
+
Args:
|
288 |
+
size: 原始尺寸描述
|
289 |
+
|
290 |
+
Returns:
|
291 |
+
str: 標準化後的尺寸類別
|
292 |
+
"""
|
293 |
+
try:
|
294 |
+
size = size.lower()
|
295 |
+
if 'tiny' in size:
|
296 |
+
return 'Tiny'
|
297 |
+
elif 'small' in size and 'medium' in size:
|
298 |
+
return 'Small-Medium'
|
299 |
+
elif 'small' in size:
|
300 |
+
return 'Small'
|
301 |
+
elif 'medium' in size and 'large' in size:
|
302 |
+
return 'Medium-Large'
|
303 |
+
elif 'medium' in size:
|
304 |
+
return 'Medium'
|
305 |
+
elif 'giant' in size:
|
306 |
+
return 'Giant'
|
307 |
+
elif 'large' in size:
|
308 |
+
return 'Large'
|
309 |
+
return 'Medium' # 默認為 Medium
|
310 |
+
except Exception as e:
|
311 |
+
print(f"Error in normalize_size: {str(e)}")
|
312 |
+
return 'Medium'
|
313 |
+
|
314 |
+
def _calculate_exercise_similarity_enhanced(self, exercise1: str, exercise2: str) -> float:
|
315 |
+
try:
|
316 |
+
exercise_values = {
|
317 |
+
'Very High': 4,
|
318 |
+
'High': 3,
|
319 |
+
'Moderate': 2,
|
320 |
+
'Low': 1
|
321 |
+
}
|
322 |
+
|
323 |
+
value1 = exercise_values.get(exercise1, 2)
|
324 |
+
value2 = exercise_values.get(exercise2, 2)
|
325 |
+
|
326 |
+
# 計算差異
|
327 |
+
diff = abs(value1 - value2)
|
328 |
+
|
329 |
+
if diff == 0:
|
330 |
+
return 1.0
|
331 |
+
elif diff == 1:
|
332 |
+
return 0.7
|
333 |
+
elif diff == 2:
|
334 |
+
return 0.4
|
335 |
+
else:
|
336 |
+
return 0.2
|
337 |
+
|
338 |
+
except Exception as e:
|
339 |
+
print(f"Error in calculate_exercise_similarity_enhanced: {str(e)}")
|
340 |
+
return 0.5
|
341 |
+
|
342 |
+
def _calculate_grooming_similarity(self, breed1: str, breed2: str) -> float:
|
343 |
+
"""
|
344 |
+
計算美容需求相似度
|
345 |
+
|
346 |
+
Args:
|
347 |
+
breed1: 第一個品種名稱
|
348 |
+
breed2: 第二個品種名稱
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
float: 相似度分數 (0-1)
|
352 |
+
"""
|
353 |
+
try:
|
354 |
+
grooming_map = {
|
355 |
+
'Low': 1,
|
356 |
+
'Moderate': 2,
|
357 |
+
'High': 3
|
358 |
+
}
|
359 |
+
|
360 |
+
# 從dog_data中獲取美容需求
|
361 |
+
breed1_info = next((dog for dog in self.dog_data if dog[1] == breed1), None)
|
362 |
+
breed2_info = next((dog for dog in self.dog_data if dog[1] == breed2), None)
|
363 |
+
|
364 |
+
if not breed1_info or not breed2_info:
|
365 |
+
return 0.5 # 數據缺失時返回中等相似度
|
366 |
+
|
367 |
+
grooming1 = breed1_info[8] # Grooming_Needs index
|
368 |
+
grooming2 = breed2_info[8]
|
369 |
+
|
370 |
+
# 獲取數值,默認為 Moderate
|
371 |
+
value1 = grooming_map.get(grooming1, 2)
|
372 |
+
value2 = grooming_map.get(grooming2, 2)
|
373 |
+
|
374 |
+
# 基礎相似度計算
|
375 |
+
base_similarity = 1.0 - (abs(value1 - value2) / 2.0)
|
376 |
+
|
377 |
+
# 美容需求調整
|
378 |
+
if grooming2 == 'Moderate':
|
379 |
+
base_similarity *= 1.1 # 中等美容需求略微加分
|
380 |
+
elif grooming2 == 'High':
|
381 |
+
base_similarity *= 0.9 # 高美容需求略微降分
|
382 |
+
|
383 |
+
return min(1.0, base_similarity)
|
384 |
+
except Exception as e:
|
385 |
+
print(f"Error in calculate_grooming_similarity: {str(e)}")
|
386 |
+
return 0.5
|
387 |
+
|
388 |
+
def _calculate_health_score_similarity(self, breed1: str, breed2: str) -> float:
|
389 |
+
"""
|
390 |
+
計算兩個品種的健康評分相似度
|
391 |
+
"""
|
392 |
+
try:
|
393 |
+
score1 = self._calculate_health_score(breed1)
|
394 |
+
score2 = self._calculate_health_score(breed2)
|
395 |
+
return 1.0 - abs(score1 - score2)
|
396 |
+
except Exception as e:
|
397 |
+
print(f"Error in calculate_health_score_similarity: {str(e)}")
|
398 |
+
return 0.5
|
399 |
+
|
400 |
+
def _calculate_health_score(self, breed_name: str) -> float:
|
401 |
+
"""
|
402 |
+
計算品種的健康評分
|
403 |
+
|
404 |
+
Args:
|
405 |
+
breed_name: 品種名稱
|
406 |
+
|
407 |
+
Returns:
|
408 |
+
float: 健康評分 (0-1)
|
409 |
+
"""
|
410 |
+
try:
|
411 |
+
if breed_name not in breed_health_info:
|
412 |
+
return 0.5
|
413 |
+
|
414 |
+
health_notes = breed_health_info[breed_name]['health_notes'].lower()
|
415 |
+
|
416 |
+
# 嚴重健康問題
|
417 |
+
severe_conditions = [
|
418 |
+
'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia',
|
419 |
+
'bloat', 'progressive', 'syndrome'
|
420 |
+
]
|
421 |
+
|
422 |
+
# 中等健康問題
|
423 |
+
moderate_conditions = [
|
424 |
+
'allergies', 'infections', 'thyroid', 'luxation',
|
425 |
+
'skin problems', 'ear'
|
426 |
+
]
|
427 |
+
|
428 |
+
# 計算問題數量
|
429 |
+
severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
|
430 |
+
moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
|
431 |
+
|
432 |
+
# 基礎健康評分
|
433 |
+
health_score = 1.0
|
434 |
+
health_score -= (severe_count * 0.15) # 嚴重問題扣分更多
|
435 |
+
health_score -= (moderate_count * 0.05) # 中等問題扣分較少
|
436 |
+
|
437 |
+
# 確保評分在合理範圍內
|
438 |
+
return max(0.3, min(1.0, health_score))
|
439 |
+
except Exception as e:
|
440 |
+
print(f"Error in calculate_health_score: {str(e)}")
|
441 |
+
return 0.5
|
442 |
+
|
443 |
+
|
444 |
+
def _calculate_noise_similarity(self, breed1: str, breed2: str) -> float:
|
445 |
+
"""計算兩個品種的噪音相似度"""
|
446 |
+
noise_levels = {
|
447 |
+
'Low': 1,
|
448 |
+
'Moderate': 2,
|
449 |
+
'High': 3,
|
450 |
+
'Unknown': 2 # 默認為中等
|
451 |
+
}
|
452 |
+
|
453 |
+
noise1 = breed_noise_info.get(breed1, {}).get('noise_level', 'Unknown')
|
454 |
+
noise2 = breed_noise_info.get(breed2, {}).get('noise_level', 'Unknown')
|
455 |
+
|
456 |
+
# 獲取數值級別
|
457 |
+
level1 = noise_levels.get(noise1, 2)
|
458 |
+
level2 = noise_levels.get(noise2, 2)
|
459 |
+
|
460 |
+
# 計算差異並歸一化
|
461 |
+
difference = abs(level1 - level2)
|
462 |
+
similarity = 1.0 - (difference / 2) # 最大差異是2,所以除以2來歸一化
|
463 |
+
|
464 |
+
return similarity
|
465 |
+
|
466 |
+
# bonus score zone
|
467 |
+
def _calculate_size_bonus(self, size: str, living_space: str) -> float:
|
468 |
+
"""
|
469 |
+
計算尺寸匹配的獎勵分數
|
470 |
+
|
471 |
+
Args:
|
472 |
+
size: 品種尺寸
|
473 |
+
living_space: 居住空間類型
|
474 |
+
|
475 |
+
Returns:
|
476 |
+
float: 獎勵分數 (-0.25 到 0.15)
|
477 |
+
"""
|
478 |
+
try:
|
479 |
+
if living_space == "apartment":
|
480 |
+
size_scores = {
|
481 |
+
'Tiny': -0.15,
|
482 |
+
'Small': 0.10,
|
483 |
+
'Medium': 0.15,
|
484 |
+
'Large': 0.10,
|
485 |
+
'Giant': -0.30
|
486 |
+
}
|
487 |
+
else: # house
|
488 |
+
size_scores = {
|
489 |
+
'Tiny': -0.10,
|
490 |
+
'Small': 0.05,
|
491 |
+
'Medium': 0.15,
|
492 |
+
'Large': 0.15,
|
493 |
+
'Giant': -0.15
|
494 |
+
}
|
495 |
+
return size_scores.get(size, 0.0)
|
496 |
+
except Exception as e:
|
497 |
+
print(f"Error in calculate_size_bonus: {str(e)}")
|
498 |
+
return 0.0
|
499 |
+
|
500 |
+
def _calculate_exercise_bonus(self, exercise_needs: str, exercise_time: int) -> float:
|
501 |
+
"""
|
502 |
+
計算運動需求匹配的獎勵分數
|
503 |
+
|
504 |
+
Args:
|
505 |
+
exercise_needs: 品種運動需求
|
506 |
+
exercise_time: 用戶可提供的運動時間(分鐘)
|
507 |
+
|
508 |
+
Returns:
|
509 |
+
float: 獎勵分數 (-0.20 到 0.20)
|
510 |
+
"""
|
511 |
+
try:
|
512 |
+
if exercise_time >= 120: # 高運動量需求
|
513 |
+
exercise_scores = {
|
514 |
+
'Low': -0.30,
|
515 |
+
'Moderate': -0.10,
|
516 |
+
'High': 0.15,
|
517 |
+
'Very High': 0.30
|
518 |
+
}
|
519 |
+
elif exercise_time >= 60: # 中等運動量需求
|
520 |
+
exercise_scores = {
|
521 |
+
'Low': -0.05,
|
522 |
+
'Moderate': 0.15,
|
523 |
+
'High': 0.05,
|
524 |
+
'Very High': -0.10
|
525 |
+
}
|
526 |
+
else: # 低運動量需求
|
527 |
+
exercise_scores = {
|
528 |
+
'Low': 0.15,
|
529 |
+
'Moderate': 0.05,
|
530 |
+
'High': -0.15,
|
531 |
+
'Very High': -0.20
|
532 |
+
}
|
533 |
+
return exercise_scores.get(exercise_needs, 0.0)
|
534 |
+
except Exception as e:
|
535 |
+
print(f"Error in calculate_exercise_bonus: {str(e)}")
|
536 |
+
return 0.0
|
537 |
+
|
538 |
+
def _calculate_grooming_bonus(self, grooming: str, commitment: str) -> float:
|
539 |
+
"""
|
540 |
+
計算美容需求匹配的獎勵分數
|
541 |
+
|
542 |
+
Args:
|
543 |
+
grooming: 品種美容需求
|
544 |
+
commitment: 用戶美容投入程度
|
545 |
+
|
546 |
+
Returns:
|
547 |
+
float: 獎勵分數 (-0.15 到 0.10)
|
548 |
+
"""
|
549 |
+
try:
|
550 |
+
if commitment == "high":
|
551 |
+
grooming_scores = {
|
552 |
+
'Low': -0.05,
|
553 |
+
'Moderate': 0.05,
|
554 |
+
'High': 0.10
|
555 |
+
}
|
556 |
+
else: # medium or low commitment
|
557 |
+
grooming_scores = {
|
558 |
+
'Low': 0.10,
|
559 |
+
'Moderate': 0.05,
|
560 |
+
'High': -0.20
|
561 |
+
}
|
562 |
+
return grooming_scores.get(grooming, 0.0)
|
563 |
+
except Exception as e:
|
564 |
+
print(f"Error in calculate_grooming_bonus: {str(e)}")
|
565 |
+
return 0.0
|
566 |
+
|
567 |
+
def _calculate_family_bonus(self, breed_info: Dict) -> float:
|
568 |
+
"""
|
569 |
+
計算家庭適應性的獎勵分數
|
570 |
+
|
571 |
+
Args:
|
572 |
+
breed_info: 品種信息字典
|
573 |
+
|
574 |
+
Returns:
|
575 |
+
float: 獎勵分數 (0 到 0.20)
|
576 |
+
"""
|
577 |
+
try:
|
578 |
+
bonus = 0.0
|
579 |
+
temperament = breed_info.get('Temperament', '').lower()
|
580 |
+
good_with_children = breed_info.get('Good_With_Children', False)
|
581 |
+
|
582 |
+
if good_with_children:
|
583 |
+
bonus += 0.20
|
584 |
+
if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
|
585 |
+
bonus += 0.10
|
586 |
+
|
587 |
+
return min(0.20, bonus)
|
588 |
+
except Exception as e:
|
589 |
+
print(f"Error in calculate_family_bonus: {str(e)}")
|
590 |
+
return 0.0
|
591 |
+
|
592 |
+
|
593 |
+
def _detect_scenario(self, description: str) -> Dict[str, float]:
|
594 |
+
"""
|
595 |
+
檢測場景並返回對應權重
|
596 |
+
"""
|
597 |
+
# 基礎場景定義
|
598 |
+
scenarios = {
|
599 |
+
'athletic': {
|
600 |
+
'keywords': ['active', 'exercise', 'running', 'athletic', 'energetic', 'sports'],
|
601 |
+
'weights': {
|
602 |
+
'exercise': 0.40,
|
603 |
+
'size': 0.25,
|
604 |
+
'temperament': 0.20,
|
605 |
+
'health': 0.15
|
606 |
+
}
|
607 |
+
},
|
608 |
+
'apartment': {
|
609 |
+
'keywords': ['apartment', 'flat', 'condo'],
|
610 |
+
'weights': {
|
611 |
+
'size': 0.35,
|
612 |
+
'noise': 0.30,
|
613 |
+
'exercise': 0.20,
|
614 |
+
'temperament': 0.15
|
615 |
+
}
|
616 |
+
},
|
617 |
+
'family': {
|
618 |
+
'keywords': ['family', 'children', 'kids', 'friendly'],
|
619 |
+
'weights': {
|
620 |
+
'temperament': 0.35,
|
621 |
+
'safety': 0.30,
|
622 |
+
'noise': 0.20,
|
623 |
+
'exercise': 0.15
|
624 |
+
}
|
625 |
+
},
|
626 |
+
'novice': {
|
627 |
+
'keywords': ['first time', 'beginner', 'new owner', 'inexperienced'],
|
628 |
+
'weights': {
|
629 |
+
'trainability': 0.35,
|
630 |
+
'temperament': 0.30,
|
631 |
+
'care_level': 0.20,
|
632 |
+
'health': 0.15
|
633 |
+
}
|
634 |
+
}
|
635 |
+
}
|
636 |
+
|
637 |
+
# 檢測匹配的場景
|
638 |
+
matched_scenarios = []
|
639 |
+
for scenario, config in scenarios.items():
|
640 |
+
if any(keyword in description.lower() for keyword in config['keywords']):
|
641 |
+
matched_scenarios.append(scenario)
|
642 |
+
|
643 |
+
# 默認權重
|
644 |
+
default_weights = {
|
645 |
+
'exercise': 0.20,
|
646 |
+
'size': 0.20,
|
647 |
+
'temperament': 0.20,
|
648 |
+
'health': 0.15,
|
649 |
+
'noise': 0.10,
|
650 |
+
'grooming': 0.10,
|
651 |
+
'trainability': 0.05
|
652 |
+
}
|
653 |
+
|
654 |
+
# 如果沒有匹配場景,返回默認權重
|
655 |
+
if not matched_scenarios:
|
656 |
+
return default_weights
|
657 |
+
|
658 |
+
# 合併匹配場景的權重
|
659 |
+
final_weights = default_weights.copy()
|
660 |
+
for scenario in matched_scenarios:
|
661 |
+
scenario_weights = scenarios[scenario]['weights']
|
662 |
+
for feature, weight in scenario_weights.items():
|
663 |
+
if feature in final_weights:
|
664 |
+
final_weights[feature] = max(final_weights[feature], weight)
|
665 |
+
|
666 |
+
return final_weights
|
667 |
+
|
668 |
+
|
669 |
+
def _calculate_final_scores(self, breed_name: str, base_scores: Dict,
|
670 |
+
smart_score: float, is_preferred: bool,
|
671 |
+
similarity_score: float = 0.0,
|
672 |
+
characteristics_score: float = 1.0,
|
673 |
+
weights: Dict[str, float] = None) -> Dict:
|
674 |
+
try:
|
675 |
+
# 使用傳入的權重或默認權重
|
676 |
+
if weights is None:
|
677 |
+
weights = {
|
678 |
+
'base': 0.35,
|
679 |
+
'smart': 0.35,
|
680 |
+
'bonus': 0.15,
|
681 |
+
'characteristics': 0.15
|
682 |
+
}
|
683 |
+
|
684 |
+
# 確保 base_scores 包含所有必要的鍵
|
685 |
+
base_scores = {
|
686 |
+
'overall': base_scores.get('overall', smart_score),
|
687 |
+
'size': base_scores.get('size', 0.0),
|
688 |
+
'exercise': base_scores.get('exercise', 0.0),
|
689 |
+
'temperament': base_scores.get('temperament', 0.0),
|
690 |
+
'grooming': base_scores.get('grooming', 0.0),
|
691 |
+
'health': base_scores.get('health', 0.0),
|
692 |
+
'noise': base_scores.get('noise', 0.0)
|
693 |
+
}
|
694 |
+
|
695 |
+
# 計算基礎分數
|
696 |
+
base_score = base_scores['overall']
|
697 |
+
|
698 |
+
# 計算獎勵分數
|
699 |
+
bonus_score = 0.0
|
700 |
+
if is_preferred:
|
701 |
+
bonus_score = 0.95
|
702 |
+
elif similarity_score > 0:
|
703 |
+
bonus_score = min(0.8, similarity_score) * 0.95
|
704 |
+
|
705 |
+
# 特徵匹配度調整
|
706 |
+
if characteristics_score < 0.5:
|
707 |
+
base_score *= 0.7 # 降低基礎分數
|
708 |
+
smart_score *= 0.7 # 降低智能匹配分數
|
709 |
+
|
710 |
+
# 計算最終分數
|
711 |
+
final_score = (
|
712 |
+
base_score * weights.get('base', 0.35) +
|
713 |
+
smart_score * weights.get('smart', 0.35) +
|
714 |
+
bonus_score * weights.get('bonus', 0.15) +
|
715 |
+
characteristics_score * weights.get('characteristics', 0.15)
|
716 |
+
)
|
717 |
+
|
718 |
+
# 確保分數在合理範圍內
|
719 |
+
final_score = min(1.0, max(0.3, final_score))
|
720 |
+
|
721 |
+
return {
|
722 |
+
'final_score': round(final_score, 4),
|
723 |
+
'base_score': round(base_score, 4),
|
724 |
+
'smart_score': round(smart_score, 4),
|
725 |
+
'bonus_score': round(bonus_score, 4),
|
726 |
+
'characteristics_score': round(characteristics_score, 4),
|
727 |
+
'detailed_scores': base_scores
|
728 |
+
}
|
729 |
+
|
730 |
+
except Exception as e:
|
731 |
+
print(f"Error in calculate_final_scores: {str(e)}")
|
732 |
+
return {
|
733 |
+
'final_score': 0.5,
|
734 |
+
'base_score': 0.5,
|
735 |
+
'smart_score': 0.5,
|
736 |
+
'bonus_score': 0.0,
|
737 |
+
'characteristics_score': 0.5,
|
738 |
+
'detailed_scores': {
|
739 |
+
'overall': 0.5,
|
740 |
+
'size': 0.5,
|
741 |
+
'exercise': 0.5,
|
742 |
+
'temperament': 0.5,
|
743 |
+
'grooming': 0.5,
|
744 |
+
'health': 0.5,
|
745 |
+
'noise': 0.5
|
746 |
+
}
|
747 |
+
}
|
748 |
+
|
749 |
+
def _general_matching(self, description: str, weights: Dict[str, float], top_n: int = 10) -> List[Dict]:
|
750 |
+
"""基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素"""
|
751 |
+
try:
|
752 |
+
matches = []
|
753 |
+
desc_embedding = self._get_cached_embedding(description)
|
754 |
+
|
755 |
+
for breed in self.dog_data:
|
756 |
+
breed_name = breed[1]
|
757 |
+
breed_features = self._extract_breed_features(breed)
|
758 |
+
breed_description = breed[9]
|
759 |
+
temperament = breed[4]
|
760 |
+
|
761 |
+
breed_desc_embedding = self._get_cached_embedding(breed_description)
|
762 |
+
breed_temp_embedding = self._get_cached_embedding(temperament)
|
763 |
+
|
764 |
+
desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
|
765 |
+
temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
|
766 |
+
|
767 |
+
noise_similarity = self._calculate_noise_similarity(breed_name, breed_name)
|
768 |
+
health_score = self._calculate_health_score(breed_name)
|
769 |
+
health_similarity = 1.0 - abs(health_score - 0.8)
|
770 |
+
|
771 |
+
# 使用傳入的權重
|
772 |
+
final_score = (
|
773 |
+
desc_similarity * weights.get('description', 0.35) +
|
774 |
+
temp_similarity * weights.get('temperament', 0.25) +
|
775 |
+
noise_similarity * weights.get('noise', 0.2) +
|
776 |
+
health_similarity * weights.get('health', 0.2)
|
777 |
+
)
|
778 |
+
|
779 |
+
# 計算特徵分數
|
780 |
+
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
|
781 |
+
|
782 |
+
# 構建完整的 scores 字典
|
783 |
+
scores = {
|
784 |
+
'overall': final_score,
|
785 |
+
'size': breed_features.get('size_score', 0.0),
|
786 |
+
'exercise': breed_features.get('exercise_score', 0.0),
|
787 |
+
'temperament': temp_similarity,
|
788 |
+
'grooming': breed_features.get('grooming_score', 0.0),
|
789 |
+
'health': health_score,
|
790 |
+
'noise': noise_similarity
|
791 |
+
}
|
792 |
+
|
793 |
+
matches.append({
|
794 |
+
'breed': breed_name,
|
795 |
+
'scores': scores,
|
796 |
+
'final_score': final_score,
|
797 |
+
'base_score': final_score,
|
798 |
+
'characteristics_score': characteristics_score,
|
799 |
+
'bonus_score': 0.0,
|
800 |
+
'is_preferred': False,
|
801 |
+
'similarity': final_score,
|
802 |
+
'health_score': health_score,
|
803 |
+
'reason': "Matched based on description and characteristics"
|
804 |
+
})
|
805 |
+
|
806 |
+
return sorted(matches, key=lambda x: (-x['characteristics_score'], -x['final_score']))[:top_n]
|
807 |
+
|
808 |
+
except Exception as e:
|
809 |
+
print(f"Error in _general_matching: {str(e)}")
|
810 |
+
return []
|
811 |
+
|
812 |
+
|
813 |
+
def _detect_breed_preference(self, description: str) -> Optional[str]:
|
814 |
+
"""檢測用戶是否提到特定品種"""
|
815 |
+
description_lower = f" {description.lower()} "
|
816 |
+
|
817 |
+
for breed_info in self.dog_data:
|
818 |
+
breed_name = breed_info[1]
|
819 |
+
normalized_breed = breed_name.lower().replace('_', ' ')
|
820 |
+
|
821 |
+
pattern = rf"\b{re.escape(normalized_breed)}\b"
|
822 |
+
|
823 |
+
if re.search(pattern, description_lower):
|
824 |
+
return breed_name
|
825 |
+
|
826 |
+
return None
|
827 |
+
|
828 |
+
def _extract_breed_features(self, breed_info: Tuple) -> Dict:
|
829 |
+
"""
|
830 |
+
從品種信息中提取特徵
|
831 |
+
|
832 |
+
Args:
|
833 |
+
breed_info: 品種信息元組
|
834 |
+
|
835 |
+
Returns:
|
836 |
+
Dict: 包含品種特徵的字典
|
837 |
+
"""
|
838 |
+
try:
|
839 |
+
return {
|
840 |
+
'breed_name': breed_info[1],
|
841 |
+
'size': breed_info[2],
|
842 |
+
'temperament': breed_info[4],
|
843 |
+
'exercise': breed_info[7],
|
844 |
+
'grooming': breed_info[8],
|
845 |
+
'description': breed_info[9],
|
846 |
+
'good_with_children': breed_info[6]
|
847 |
+
}
|
848 |
+
except Exception as e:
|
849 |
+
print(f"Error in extract_breed_features: {str(e)}")
|
850 |
+
return {
|
851 |
+
'breed_name': '',
|
852 |
+
'size': 'Medium',
|
853 |
+
'temperament': '',
|
854 |
+
'exercise': 'Moderate',
|
855 |
+
'grooming': 'Moderate',
|
856 |
+
'description': '',
|
857 |
+
'good_with_children': False
|
858 |
+
}
|
859 |
+
|
860 |
+
def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
|
861 |
+
try:
|
862 |
+
# 獲取場景權重
|
863 |
+
weights = self._detect_scenario(description)
|
864 |
+
matches = []
|
865 |
+
preferred_breed = self._detect_breed_preference(description)
|
866 |
+
|
867 |
+
# 處理用戶明確提到的品種
|
868 |
+
if preferred_breed:
|
869 |
+
breed_info = next((breed for breed in self.dog_data if breed[1] == preferred_breed), None)
|
870 |
+
if breed_info:
|
871 |
+
breed_features = self._extract_breed_features(breed_info)
|
872 |
+
base_similarity = self._calculate_breed_similarity(breed_features, breed_features, weights)
|
873 |
+
|
874 |
+
# 計算特徵分數
|
875 |
+
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
|
876 |
+
|
877 |
+
# 計算最終分數
|
878 |
+
scores = self._calculate_final_scores(
|
879 |
+
preferred_breed,
|
880 |
+
{'overall': base_similarity},
|
881 |
+
smart_score=base_similarity,
|
882 |
+
is_preferred=True,
|
883 |
+
similarity_score=1.0,
|
884 |
+
characteristics_score=characteristics_score,
|
885 |
+
weights=weights
|
886 |
+
)
|
887 |
+
|
888 |
+
matches.append({
|
889 |
+
'breed': preferred_breed,
|
890 |
+
'scores': scores['detailed_scores'],
|
891 |
+
'final_score': scores['final_score'],
|
892 |
+
'base_score': scores['base_score'],
|
893 |
+
'bonus_score': scores['bonus_score'],
|
894 |
+
'characteristics_score': characteristics_score,
|
895 |
+
'is_preferred': True,
|
896 |
+
'priority': 1,
|
897 |
+
'health_score': self._calculate_health_score(preferred_breed),
|
898 |
+
'reason': "Directly matched your preferred breed"
|
899 |
+
})
|
900 |
+
|
901 |
+
# 尋找相似品種
|
902 |
+
similar_breeds = self.find_similar_breeds(preferred_breed, top_n=top_n-1)
|
903 |
+
for breed_name, similarity in similar_breeds:
|
904 |
+
if breed_name != preferred_breed:
|
905 |
+
breed_info = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
|
906 |
+
if breed_info:
|
907 |
+
breed_features = self._extract_breed_features(breed_info)
|
908 |
+
characteristics_score = self.get_breed_characteristics_score(breed_features, description)
|
909 |
+
|
910 |
+
scores = self._calculate_final_scores(
|
911 |
+
breed_name,
|
912 |
+
{'overall': similarity},
|
913 |
+
smart_score=similarity,
|
914 |
+
is_preferred=False,
|
915 |
+
similarity_score=similarity,
|
916 |
+
characteristics_score=characteristics_score,
|
917 |
+
weights=weights
|
918 |
+
)
|
919 |
+
|
920 |
+
if scores['final_score'] >= 0.4: # 設定最低分數門檻
|
921 |
+
matches.append({
|
922 |
+
'breed': breed_name,
|
923 |
+
'scores': scores['detailed_scores'],
|
924 |
+
'final_score': scores['final_score'],
|
925 |
+
'base_score': scores['base_score'],
|
926 |
+
'bonus_score': scores['bonus_score'],
|
927 |
+
'characteristics_score': characteristics_score,
|
928 |
+
'is_preferred': False,
|
929 |
+
'priority': 2,
|
930 |
+
'health_score': self._calculate_health_score(breed_name),
|
931 |
+
'reason': f"Similar to {preferred_breed}"
|
932 |
+
})
|
933 |
+
|
934 |
+
# 如果沒有找到偏好品種或需要更多匹配
|
935 |
+
if len(matches) < top_n:
|
936 |
+
general_matches = self._general_matching(description, weights, top_n - len(matches))
|
937 |
+
for match in general_matches:
|
938 |
+
if match['breed'] not in [m['breed'] for m in matches]:
|
939 |
+
match['priority'] = 3
|
940 |
+
if match['final_score'] >= 0.4: # 分數門檻
|
941 |
+
matches.append(match)
|
942 |
+
|
943 |
+
# 最終排序
|
944 |
+
matches.sort(key=lambda x: (
|
945 |
+
-x.get('characteristics_score', 0), # 首先考慮特徵匹配度
|
946 |
+
-x.get('final_score', 0), # 然後是總分
|
947 |
+
-x.get('base_score', 0), # 最後是基礎分數
|
948 |
+
x.get('breed', '') # 字母順序
|
949 |
+
))
|
950 |
+
|
951 |
+
# 取前N個結果
|
952 |
+
final_matches = matches[:top_n]
|
953 |
+
|
954 |
+
# 更新排名
|
955 |
+
for i, match in enumerate(final_matches, 1):
|
956 |
+
match['rank'] = i
|
957 |
+
|
958 |
+
return final_matches
|
959 |
+
|
960 |
+
except Exception as e:
|
961 |
+
print(f"Error in match_user_preference: {str(e)}")
|
962 |
+
return []
|