Spaces:
Sleeping
Sleeping
Delete breed_recommendation.py
Browse files- breed_recommendation.py +0 -292
breed_recommendation.py
DELETED
@@ -1,292 +0,0 @@
|
|
1 |
-
|
2 |
-
import sqlite3
|
3 |
-
import gradio as gr
|
4 |
-
from dog_database import get_dog_description, dog_data
|
5 |
-
from breed_health_info import breed_health_info
|
6 |
-
from breed_noise_info import breed_noise_info
|
7 |
-
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
|
8 |
-
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
|
9 |
-
from smart_breed_matcher import SmartBreedMatcher
|
10 |
-
from description_search_ui import create_description_search_tab
|
11 |
-
|
12 |
-
def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):
|
13 |
-
|
14 |
-
with gr.TabItem("Breed Recommendation"):
|
15 |
-
with gr.Tabs():
|
16 |
-
with gr.Tab("Find by Criteria"):
|
17 |
-
gr.HTML("""
|
18 |
-
<div style='
|
19 |
-
text-align: center;
|
20 |
-
padding: 20px 0;
|
21 |
-
margin: 15px 0;
|
22 |
-
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
|
23 |
-
border-radius: 10px;
|
24 |
-
'>
|
25 |
-
<p style='
|
26 |
-
font-size: 1.2em;
|
27 |
-
margin: 0;
|
28 |
-
padding: 0 20px;
|
29 |
-
line-height: 1.5;
|
30 |
-
background: linear-gradient(90deg, #4299e1, #48bb78);
|
31 |
-
-webkit-background-clip: text;
|
32 |
-
-webkit-text-fill-color: transparent;
|
33 |
-
font-weight: 600;
|
34 |
-
'>
|
35 |
-
Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!
|
36 |
-
</p>
|
37 |
-
</div>
|
38 |
-
""")
|
39 |
-
|
40 |
-
with gr.Row():
|
41 |
-
with gr.Column():
|
42 |
-
living_space = gr.Radio(
|
43 |
-
choices=["apartment", "house_small", "house_large"],
|
44 |
-
label="What type of living space do you have?",
|
45 |
-
info="Choose your current living situation",
|
46 |
-
value="apartment"
|
47 |
-
)
|
48 |
-
|
49 |
-
exercise_time = gr.Slider(
|
50 |
-
minimum=0,
|
51 |
-
maximum=180,
|
52 |
-
value=60,
|
53 |
-
label="Daily exercise time (minutes)",
|
54 |
-
info="Consider walks, play time, and training"
|
55 |
-
)
|
56 |
-
|
57 |
-
grooming_commitment = gr.Radio(
|
58 |
-
choices=["low", "medium", "high"],
|
59 |
-
label="Grooming commitment level",
|
60 |
-
info="Low: monthly, Medium: weekly, High: daily",
|
61 |
-
value="medium"
|
62 |
-
)
|
63 |
-
|
64 |
-
with gr.Column():
|
65 |
-
experience_level = gr.Radio(
|
66 |
-
choices=["beginner", "intermediate", "advanced"],
|
67 |
-
label="Dog ownership experience",
|
68 |
-
info="Be honest - this helps find the right match",
|
69 |
-
value="beginner"
|
70 |
-
)
|
71 |
-
|
72 |
-
has_children = gr.Checkbox(
|
73 |
-
label="Have children at home",
|
74 |
-
info="Helps recommend child-friendly breeds"
|
75 |
-
)
|
76 |
-
|
77 |
-
noise_tolerance = gr.Radio(
|
78 |
-
choices=["low", "medium", "high"],
|
79 |
-
label="Noise tolerance level",
|
80 |
-
info="Some breeds are more vocal than others",
|
81 |
-
value="medium"
|
82 |
-
)
|
83 |
-
|
84 |
-
get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
|
85 |
-
recommendation_output = gr.HTML(label="Breed Recommendations")
|
86 |
-
|
87 |
-
with gr.Tab("Find by Description"):
|
88 |
-
description_input, description_search_btn, description_output, loading_msg = create_description_search_tab()
|
89 |
-
|
90 |
-
|
91 |
-
def on_find_match_click(*args):
|
92 |
-
try:
|
93 |
-
user_prefs = UserPreferences(
|
94 |
-
living_space=args[0],
|
95 |
-
exercise_time=args[1],
|
96 |
-
grooming_commitment=args[2],
|
97 |
-
experience_level=args[3],
|
98 |
-
has_children=args[4],
|
99 |
-
noise_tolerance=args[5],
|
100 |
-
space_for_play=True if args[0] != "apartment" else False,
|
101 |
-
other_pets=False,
|
102 |
-
climate="moderate",
|
103 |
-
health_sensitivity="medium", # 新增: 默認中等敏感度
|
104 |
-
barking_acceptance=args[5] # 使用 noise_tolerance 作為 barking_acceptance
|
105 |
-
)
|
106 |
-
|
107 |
-
recommendations = get_breed_recommendations(user_prefs, top_n=10)
|
108 |
-
|
109 |
-
history_results = [{
|
110 |
-
'breed': rec['breed'],
|
111 |
-
'rank': rec['rank'],
|
112 |
-
'overall_score': rec['final_score'],
|
113 |
-
'base_score': rec['base_score'],
|
114 |
-
'bonus_score': rec['bonus_score'],
|
115 |
-
'scores': rec['scores']
|
116 |
-
} for rec in recommendations]
|
117 |
-
|
118 |
-
# 保存到歷史記錄,也需要更新保存的偏好設定
|
119 |
-
history_component.save_search(
|
120 |
-
user_preferences={
|
121 |
-
'living_space': args[0],
|
122 |
-
'exercise_time': args[1],
|
123 |
-
'grooming_commitment': args[2],
|
124 |
-
'experience_level': args[3],
|
125 |
-
'has_children': args[4],
|
126 |
-
'noise_tolerance': args[5],
|
127 |
-
'health_sensitivity': "medium",
|
128 |
-
'barking_acceptance': args[5]
|
129 |
-
},
|
130 |
-
results=history_results
|
131 |
-
)
|
132 |
-
|
133 |
-
return format_recommendation_html(recommendations)
|
134 |
-
|
135 |
-
except Exception as e:
|
136 |
-
print(f"Error in find match: {str(e)}")
|
137 |
-
import traceback
|
138 |
-
print(traceback.format_exc())
|
139 |
-
return "Error getting recommendations"
|
140 |
-
|
141 |
-
def on_description_search(description: str):
|
142 |
-
try:
|
143 |
-
matcher = SmartBreedMatcher(dog_data)
|
144 |
-
breed_recommendations = matcher.match_user_preference(description, top_n=10)
|
145 |
-
|
146 |
-
print("Creating user preferences...")
|
147 |
-
user_prefs = UserPreferences(
|
148 |
-
living_space="apartment" if "apartment" in description.lower() else "house_small",
|
149 |
-
exercise_time=60,
|
150 |
-
grooming_commitment="medium",
|
151 |
-
experience_level="intermediate",
|
152 |
-
has_children="children" in description.lower() or "kids" in description.lower(),
|
153 |
-
noise_tolerance="medium",
|
154 |
-
space_for_play=True if "yard" in description.lower() or "garden" in description.lower() else False,
|
155 |
-
other_pets=False,
|
156 |
-
climate="moderate",
|
157 |
-
health_sensitivity="medium",
|
158 |
-
barking_acceptance=None
|
159 |
-
)
|
160 |
-
|
161 |
-
final_recommendations = []
|
162 |
-
|
163 |
-
for smart_rec in breed_recommendations:
|
164 |
-
breed_name = smart_rec['breed']
|
165 |
-
breed_info = get_dog_description(breed_name)
|
166 |
-
if not isinstance(breed_info, dict):
|
167 |
-
continue
|
168 |
-
|
169 |
-
# 計算基礎相容性分數
|
170 |
-
compatibility_scores = calculate_compatibility_score(breed_info, user_prefs)
|
171 |
-
|
172 |
-
bonus_reasons = []
|
173 |
-
bonus_score = 0
|
174 |
-
is_preferred = smart_rec.get('is_preferred', False)
|
175 |
-
similarity = smart_rec.get('similarity', 0)
|
176 |
-
|
177 |
-
# 用戶直接提到的品種
|
178 |
-
if is_preferred:
|
179 |
-
bonus_score = 0.15 # 15% bonus
|
180 |
-
bonus_reasons.append("Directly mentioned breed (+15%)")
|
181 |
-
# 高相似度品種
|
182 |
-
elif similarity > 0.8:
|
183 |
-
bonus_score = 0.10 # 10% bonus
|
184 |
-
bonus_reasons.append("Very similar to preferred breed (+10%)")
|
185 |
-
# 中等相似度品種
|
186 |
-
elif similarity > 0.6:
|
187 |
-
bonus_score = 0.05 # 5% bonus
|
188 |
-
bonus_reasons.append("Similar to preferred breed (+5%)")
|
189 |
-
|
190 |
-
# 基於品種特性的額外加分
|
191 |
-
temperament = breed_info.get('Temperament', '').lower()
|
192 |
-
if any(trait in temperament for trait in ['friendly', 'gentle', 'affectionate']):
|
193 |
-
bonus_score += 0.02 # 2% bonus
|
194 |
-
bonus_reasons.append("Positive temperament traits (+2%)")
|
195 |
-
|
196 |
-
if breed_info.get('Good with Children') == 'Yes' and user_prefs.has_children:
|
197 |
-
bonus_score += 0.03 # 3% bonus
|
198 |
-
bonus_reasons.append("Excellent with children (+3%)")
|
199 |
-
|
200 |
-
# 基礎分數和最終分數計算
|
201 |
-
base_score = compatibility_scores.get('overall', 0.7)
|
202 |
-
final_score = min(0.95, base_score + bonus_score) # 確保不超過95%
|
203 |
-
|
204 |
-
final_recommendations.append({
|
205 |
-
'rank': 0,
|
206 |
-
'breed': breed_name,
|
207 |
-
'base_score': round(base_score, 4),
|
208 |
-
'bonus_score': round(bonus_score, 4),
|
209 |
-
'final_score': round(final_score, 4),
|
210 |
-
'scores': compatibility_scores,
|
211 |
-
'match_reason': ' • '.join(bonus_reasons) if bonus_reasons else "Standard match",
|
212 |
-
'info': breed_info,
|
213 |
-
'noise_info': breed_noise_info.get(breed_name, {}),
|
214 |
-
'health_info': breed_health_info.get(breed_name, {})
|
215 |
-
})
|
216 |
-
|
217 |
-
# 根據最終分數排序
|
218 |
-
final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))
|
219 |
-
|
220 |
-
# 更新排名
|
221 |
-
for i, rec in enumerate(final_recommendations, 1):
|
222 |
-
rec['rank'] = i
|
223 |
-
|
224 |
-
# 新增:保存到歷史記錄
|
225 |
-
history_results = [{
|
226 |
-
'breed': rec['breed'],
|
227 |
-
'rank': rec['rank'],
|
228 |
-
'final_score': rec['final_score']
|
229 |
-
} for rec in final_recommendations[:10]] # 只保存前10名
|
230 |
-
|
231 |
-
history_component.save_search(
|
232 |
-
user_preferences=None, # description搜尋不需要preferences
|
233 |
-
results=history_results,
|
234 |
-
search_type="description",
|
235 |
-
description=description # 用戶輸入的描述文字
|
236 |
-
)
|
237 |
-
|
238 |
-
# 驗證排序
|
239 |
-
print("\nFinal Rankings:")
|
240 |
-
for rec in final_recommendations:
|
241 |
-
print(f"#{rec['rank']} {rec['breed']}")
|
242 |
-
print(f"Base Score: {rec['base_score']:.4f}")
|
243 |
-
print(f"Bonus Score: {rec['bonus_score']:.4f}")
|
244 |
-
print(f"Final Score: {rec['final_score']:.4f}")
|
245 |
-
print(f"Reason: {rec['match_reason']}\n")
|
246 |
-
|
247 |
-
result = format_recommendation_html(final_recommendations)
|
248 |
-
return [gr.update(value=result), gr.update(visible=False)]
|
249 |
-
|
250 |
-
except Exception as e:
|
251 |
-
error_msg = f"Error processing your description. Details: {str(e)}"
|
252 |
-
return [gr.update(value=error_msg), gr.update(visible=False)]
|
253 |
-
|
254 |
-
def show_loading():
|
255 |
-
return [gr.update(value=""), gr.update(visible=True)]
|
256 |
-
|
257 |
-
|
258 |
-
get_recommendations_btn.click(
|
259 |
-
fn=on_find_match_click,
|
260 |
-
inputs=[
|
261 |
-
living_space,
|
262 |
-
exercise_time,
|
263 |
-
grooming_commitment,
|
264 |
-
experience_level,
|
265 |
-
has_children,
|
266 |
-
noise_tolerance
|
267 |
-
],
|
268 |
-
outputs=recommendation_output
|
269 |
-
)
|
270 |
-
|
271 |
-
description_search_btn.click(
|
272 |
-
fn=show_loading, # 先顯示加載消息
|
273 |
-
outputs=[description_output, loading_msg]
|
274 |
-
).then( # 然後執行搜索
|
275 |
-
fn=on_description_search,
|
276 |
-
inputs=[description_input],
|
277 |
-
outputs=[description_output, loading_msg]
|
278 |
-
)
|
279 |
-
|
280 |
-
return {
|
281 |
-
'living_space': living_space,
|
282 |
-
'exercise_time': exercise_time,
|
283 |
-
'grooming_commitment': grooming_commitment,
|
284 |
-
'experience_level': experience_level,
|
285 |
-
'has_children': has_children,
|
286 |
-
'noise_tolerance': noise_tolerance,
|
287 |
-
'get_recommendations_btn': get_recommendations_btn,
|
288 |
-
'recommendation_output': recommendation_output,
|
289 |
-
'description_input': description_input,
|
290 |
-
'description_search_btn': description_search_btn,
|
291 |
-
'description_output': description_output
|
292 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|