|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
from huggingface_hub import get_hf_file_metadata, hf_hub_url, hub_hub_download |
|
|
|
print(get_hf_file_metadata(hf_hub_url("eu-test/gpt2", "README.md"))) |
|
print(get_hf_file_metadata(hf_hub_url("eu-test/gpt2", "model.safetensors"))) |
|
|
|
hf_hub_download(repo_id="eu-test/gpt2", filename="64-8bits.tflite") |
|
|
|
generator = pipeline('text-generation', model='eu-test/gpt2') |
|
|
|
def generate(text): |
|
result = generator(text, max_length=30, num_return_sequences=1) |
|
return result[0]["generated_text"] |
|
|
|
examples = [ |
|
["The Moon's orbit around Earth has"], |
|
["The smooth Borealis basin in the Northern Hemisphere covers 40%"], |
|
] |
|
|
|
demo = gr.Interface( |
|
fn=generate, |
|
inputs=gr.inputs.Textbox(lines=5, label="Input Text"), |
|
outputs=gr.outputs.Textbox(label="Generated Text"), |
|
examples=examples |
|
) |
|
|
|
demo.launch() |
|
|
|
|