File size: 1,411 Bytes
205573d
 
 
 
 
 
 
 
 
c80d7e3
 
 
 
 
 
 
 
 
 
96fa852
 
db1a8cc
129ec00
96fa852
 
c80d7e3
 
96fa852
 
 
 
 
 
 
 
c80d7e3
 
 
 
 
 
 
 
96fa852
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
title: README
emoji: πŸ”₯
colorFrom: blue
colorTo: purple
sdk: static
pinned: false
---

# EvalPlus: Rigorous Evaluation of LLMs for Code Generation

## About

EvalPlus evaluates LLM-generated code on:

* Code Correctness: HumanEval+ and MBPP+
* Code Efficiency: EvalPerf

## Resources

* πŸ’» **GitHub Repo**: [evalplus/evalplus](https://github.com/evalplus/evalplus)
* πŸ† **Leader Board**: [evalplus.github.io](https://evalplus.github.io)
* πŸ“œ **Papers**: [EvalPlus@NeurIPS'23](https://arxiv.org/abs/2305.01210), [EvalPerf@COLM'24](https://arxiv.org/abs/2408.06450)
* 🐍 **Python Package**: [PyPI](https://pypi.org/project/evalplus/)

## Citations

```bibtex
@inproceedings{evalplus,
  title = {Is Your Code Generated by Chat{GPT} Really Correct? Rigorous Evaluation of Large Language Models for Code Generation},
  author = {Liu, Jiawei and Xia, Chunqiu Steven and Wang, Yuyao and Zhang, Lingming},
  booktitle = {Thirty-seventh Conference on Neural Information Processing Systems},
  year = {2023},
  url = {https://openreview.net/forum?id=1qvx610Cu7},
}

@inproceedings{evalperf,
  title = {Evaluating Language Models for Efficient Code Generation},
  author = {Liu, Jiawei and Xie, Songrun and Wang, Junhao and Wei, Yuxiang and Ding, Yifeng and Zhang, Lingming},
  booktitle = {First Conference on Language Modeling},
  year = {2024},
  url = {https://openreview.net/forum?id=IBCBMeAhmC},
}
```