lvwerra HF staff commited on
Commit
f59058f
·
1 Parent(s): b0993ec

Update Space (evaluate main: 828c6327)

Browse files
Files changed (4) hide show
  1. README.md +96 -4
  2. app.py +6 -0
  3. mean_iou.py +314 -0
  4. requirements.txt +3 -0
README.md CHANGED
@@ -1,12 +1,104 @@
1
  ---
2
- title: Mean_iou
3
- emoji: 🦀
4
  colorFrom: blue
5
- colorTo: pink
6
  sdk: gradio
7
  sdk_version: 3.0.2
8
  app_file: app.py
9
  pinned: false
 
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Mean IoU
3
+ emoji: 🤗
4
  colorFrom: blue
5
+ colorTo: red
6
  sdk: gradio
7
  sdk_version: 3.0.2
8
  app_file: app.py
9
  pinned: false
10
+ tags:
11
+ - evaluate
12
+ - metric
13
  ---
14
 
15
+ # Metric Card for Mean IoU
16
+
17
+
18
+ ## Metric Description
19
+
20
+ IoU (Intersection over Union) is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth.
21
+
22
+ For binary (two classes) or multi-class segmentation, the *mean IoU* of the image is calculated by taking the IoU of each class and averaging them.
23
+
24
+ ## How to Use
25
+
26
+ The Mean IoU metric takes two numeric arrays as input corresponding to the predicted and ground truth segmentations:
27
+ ```python
28
+ >>> import numpy as np
29
+ >>> mean_iou = evaluate.load("mean_iou")
30
+ >>> predicted = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
31
+ >>> ground_truth = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
32
+ >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255)
33
+ ```
34
+
35
+ ### Inputs
36
+ **Mandatory inputs**
37
+ - `predictions` (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
38
+ - `references` (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
39
+ - `num_labels` (`int`): Number of classes (categories).
40
+ - `ignore_index` (`int`): Index that will be ignored during evaluation.
41
+
42
+ **Optional inputs**
43
+ - `nan_to_num` (`int`): If specified, NaN values will be replaced by the number defined by the user.
44
+ - `label_map` (`dict`): If specified, dictionary mapping old label indices to new label indices.
45
+ - `reduce_labels` (`bool`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. The default value is `False`.
46
+
47
+ ### Output Values
48
+ The metric returns a dictionary with the following elements:
49
+ - `mean_iou` (`float`): Mean Intersection-over-Union (IoU averaged over all categories).
50
+ - `mean_accuracy` (`float`): Mean accuracy (averaged over all categories).
51
+ - `overall_accuracy` (`float`): Overall accuracy on all images.
52
+ - `per_category_accuracy` (`ndarray` of shape `(num_labels,)`): Per category accuracy.
53
+ - `per_category_iou` (`ndarray` of shape `(num_labels,)`): Per category IoU.
54
+
55
+ The values of all of the scores reported range from from `0.0` (minimum) and `1.0` (maximum).
56
+
57
+ Output Example:
58
+ ```python
59
+ {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
60
+ ```
61
+
62
+ #### Values from Popular Papers
63
+
64
+ The [leaderboard for the CityScapes dataset](https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes) reports a Mean IOU ranging from 64 to 84; that of [ADE20k](https://paperswithcode.com/sota/semantic-segmentation-on-ade20k) ranges from 30 to a peak of 59.9, indicating that the dataset is more difficult for current approaches (as of 2022).
65
+
66
+
67
+ ### Examples
68
+
69
+ ```python
70
+ >>> import numpy as np
71
+ >>> mean_iou = evaluate.load("mean_iou")
72
+ >>> # suppose one has 3 different segmentation maps predicted
73
+ >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
74
+ >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
75
+ >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
76
+ >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
77
+ >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
78
+ >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
79
+ >>> predictions = [predicted_1, predicted_2, predicted_3]
80
+ >>> references = [actual_1, actual_2, actual_3]
81
+ >>> results = mean_iou.compute(predictions=predictions, references=references, num_labels=10, ignore_index=255, reduce_labels=False)
82
+ >>> print(results) # doctest: +NORMALIZE_WHITESPACE
83
+ {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
84
+ ```
85
+
86
+
87
+ ## Limitations and Bias
88
+ Mean IOU is an average metric, so it will not show you where model predictions differ from the ground truth (i.e. if there are particular regions or classes that the model does poorly on). Further error analysis is needed to gather actional insights that can be used to inform model improvements.
89
+
90
+ ## Citation(s)
91
+ ```bibtex
92
+ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
93
+ author = {{MMSegmentation Contributors}},
94
+ license = {Apache-2.0},
95
+ month = {7},
96
+ title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
97
+ url = {https://github.com/open-mmlab/mmsegmentation},
98
+ year = {2020}
99
+ }"
100
+ ```
101
+
102
+
103
+ ## Further References
104
+ - [Wikipedia article - Jaccard Index](https://en.wikipedia.org/wiki/Jaccard_index)
app.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import evaluate
2
+ from evaluate.utils import launch_gradio_widget
3
+
4
+
5
+ module = evaluate.load("mean_iou")
6
+ launch_gradio_widget(module)
mean_iou.py ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Evaluate Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Mean IoU (Intersection-over-Union) metric."""
15
+
16
+ from typing import Dict, Optional
17
+
18
+ import datasets
19
+ import numpy as np
20
+
21
+ import evaluate
22
+
23
+
24
+ _DESCRIPTION = """
25
+ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
26
+ between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
27
+ the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
28
+ """
29
+
30
+ _KWARGS_DESCRIPTION = """
31
+ Args:
32
+ predictions (`List[ndarray]`):
33
+ List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
34
+ references (`List[ndarray]`):
35
+ List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
36
+ num_labels (`int`):
37
+ Number of classes (categories).
38
+ ignore_index (`int`):
39
+ Index that will be ignored during evaluation.
40
+ nan_to_num (`int`, *optional*):
41
+ If specified, NaN values will be replaced by the number defined by the user.
42
+ label_map (`dict`, *optional*):
43
+ If specified, dictionary mapping old label indices to new label indices.
44
+ reduce_labels (`bool`, *optional*, defaults to `False`):
45
+ Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
46
+ and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
47
+
48
+ Returns:
49
+ `Dict[str, float | ndarray]` comprising various elements:
50
+ - *mean_iou* (`float`):
51
+ Mean Intersection-over-Union (IoU averaged over all categories).
52
+ - *mean_accuracy* (`float`):
53
+ Mean accuracy (averaged over all categories).
54
+ - *overall_accuracy* (`float`):
55
+ Overall accuracy on all images.
56
+ - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
57
+ Per category accuracy.
58
+ - *per_category_iou* (`ndarray` of shape `(num_labels,)`):
59
+ Per category IoU.
60
+
61
+ Examples:
62
+
63
+ >>> import numpy as np
64
+
65
+ >>> mean_iou = evaluate.load("mean_iou")
66
+
67
+ >>> # suppose one has 3 different segmentation maps predicted
68
+ >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
69
+ >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
70
+
71
+ >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
72
+ >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
73
+
74
+ >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
75
+ >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
76
+
77
+ >>> predicted = [predicted_1, predicted_2, predicted_3]
78
+ >>> ground_truth = [actual_1, actual_2, actual_3]
79
+
80
+ >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
81
+ >>> print(results) # doctest: +NORMALIZE_WHITESPACE
82
+ {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
83
+ """
84
+
85
+ _CITATION = """\
86
+ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
87
+ author = {{MMSegmentation Contributors}},
88
+ license = {Apache-2.0},
89
+ month = {7},
90
+ title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
91
+ url = {https://github.com/open-mmlab/mmsegmentation},
92
+ year = {2020}
93
+ }"""
94
+
95
+
96
+ def intersect_and_union(
97
+ pred_label,
98
+ label,
99
+ num_labels,
100
+ ignore_index: bool,
101
+ label_map: Optional[Dict[int, int]] = None,
102
+ reduce_labels: bool = False,
103
+ ):
104
+ """Calculate intersection and Union.
105
+
106
+ Args:
107
+ pred_label (`ndarray`):
108
+ Prediction segmentation map of shape (height, width).
109
+ label (`ndarray`):
110
+ Ground truth segmentation map of shape (height, width).
111
+ num_labels (`int`):
112
+ Number of categories.
113
+ ignore_index (`int`):
114
+ Index that will be ignored during evaluation.
115
+ label_map (`dict`, *optional*):
116
+ Mapping old labels to new labels. The parameter will work only when label is str.
117
+ reduce_labels (`bool`, *optional*, defaults to `False`):
118
+ Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
119
+ and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
120
+
121
+ Returns:
122
+ area_intersect (`ndarray`):
123
+ The intersection of prediction and ground truth histogram on all classes.
124
+ area_union (`ndarray`):
125
+ The union of prediction and ground truth histogram on all classes.
126
+ area_pred_label (`ndarray`):
127
+ The prediction histogram on all classes.
128
+ area_label (`ndarray`):
129
+ The ground truth histogram on all classes.
130
+ """
131
+ if label_map is not None:
132
+ for old_id, new_id in label_map.items():
133
+ label[label == old_id] = new_id
134
+
135
+ # turn into Numpy arrays
136
+ pred_label = np.array(pred_label)
137
+ label = np.array(label)
138
+
139
+ if reduce_labels:
140
+ label[label == 0] = 255
141
+ label = label - 1
142
+ label[label == 254] = 255
143
+
144
+ mask = label != ignore_index
145
+ mask = np.not_equal(label, ignore_index)
146
+ pred_label = pred_label[mask]
147
+ label = np.array(label)[mask]
148
+
149
+ intersect = pred_label[pred_label == label]
150
+
151
+ area_intersect = np.histogram(intersect, bins=num_labels, range=(0, num_labels - 1))[0]
152
+ area_pred_label = np.histogram(pred_label, bins=num_labels, range=(0, num_labels - 1))[0]
153
+ area_label = np.histogram(label, bins=num_labels, range=(0, num_labels - 1))[0]
154
+
155
+ area_union = area_pred_label + area_label - area_intersect
156
+
157
+ return area_intersect, area_union, area_pred_label, area_label
158
+
159
+
160
+ def total_intersect_and_union(
161
+ results,
162
+ gt_seg_maps,
163
+ num_labels,
164
+ ignore_index: bool,
165
+ label_map: Optional[Dict[int, int]] = None,
166
+ reduce_labels: bool = False,
167
+ ):
168
+ """Calculate Total Intersection and Union, by calculating `intersect_and_union` for each (predicted, ground truth) pair.
169
+
170
+ Args:
171
+ results (`ndarray`):
172
+ List of prediction segmentation maps, each of shape (height, width).
173
+ gt_seg_maps (`ndarray`):
174
+ List of ground truth segmentation maps, each of shape (height, width).
175
+ num_labels (`int`):
176
+ Number of categories.
177
+ ignore_index (`int`):
178
+ Index that will be ignored during evaluation.
179
+ label_map (`dict`, *optional*):
180
+ Mapping old labels to new labels. The parameter will work only when label is str.
181
+ reduce_labels (`bool`, *optional*, defaults to `False`):
182
+ Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
183
+ and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
184
+
185
+ Returns:
186
+ total_area_intersect (`ndarray`):
187
+ The intersection of prediction and ground truth histogram on all classes.
188
+ total_area_union (`ndarray`):
189
+ The union of prediction and ground truth histogram on all classes.
190
+ total_area_pred_label (`ndarray`):
191
+ The prediction histogram on all classes.
192
+ total_area_label (`ndarray`):
193
+ The ground truth histogram on all classes.
194
+ """
195
+ total_area_intersect = np.zeros((num_labels,), dtype=np.float64)
196
+ total_area_union = np.zeros((num_labels,), dtype=np.float64)
197
+ total_area_pred_label = np.zeros((num_labels,), dtype=np.float64)
198
+ total_area_label = np.zeros((num_labels,), dtype=np.float64)
199
+ for result, gt_seg_map in zip(results, gt_seg_maps):
200
+ area_intersect, area_union, area_pred_label, area_label = intersect_and_union(
201
+ result, gt_seg_map, num_labels, ignore_index, label_map, reduce_labels
202
+ )
203
+ total_area_intersect += area_intersect
204
+ total_area_union += area_union
205
+ total_area_pred_label += area_pred_label
206
+ total_area_label += area_label
207
+ return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
208
+
209
+
210
+ def mean_iou(
211
+ results,
212
+ gt_seg_maps,
213
+ num_labels,
214
+ ignore_index: bool,
215
+ nan_to_num: Optional[int] = None,
216
+ label_map: Optional[Dict[int, int]] = None,
217
+ reduce_labels: bool = False,
218
+ ):
219
+ """Calculate Mean Intersection and Union (mIoU).
220
+
221
+ Args:
222
+ results (`ndarray`):
223
+ List of prediction segmentation maps, each of shape (height, width).
224
+ gt_seg_maps (`ndarray`):
225
+ List of ground truth segmentation maps, each of shape (height, width).
226
+ num_labels (`int`):
227
+ Number of categories.
228
+ ignore_index (`int`):
229
+ Index that will be ignored during evaluation.
230
+ nan_to_num (`int`, *optional*):
231
+ If specified, NaN values will be replaced by the number defined by the user.
232
+ label_map (`dict`, *optional*):
233
+ Mapping old labels to new labels. The parameter will work only when label is str.
234
+ reduce_labels (`bool`, *optional*, defaults to `False`):
235
+ Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
236
+ and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
237
+
238
+ Returns:
239
+ `Dict[str, float | ndarray]` comprising various elements:
240
+ - *mean_iou* (`float`):
241
+ Mean Intersection-over-Union (IoU averaged over all categories).
242
+ - *mean_accuracy* (`float`):
243
+ Mean accuracy (averaged over all categories).
244
+ - *overall_accuracy* (`float`):
245
+ Overall accuracy on all images.
246
+ - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
247
+ Per category accuracy.
248
+ - *per_category_iou* (`ndarray` of shape `(num_labels,)`):
249
+ Per category IoU.
250
+ """
251
+ total_area_intersect, total_area_union, total_area_pred_label, total_area_label = total_intersect_and_union(
252
+ results, gt_seg_maps, num_labels, ignore_index, label_map, reduce_labels
253
+ )
254
+
255
+ # compute metrics
256
+ metrics = dict()
257
+
258
+ all_acc = total_area_intersect.sum() / total_area_label.sum()
259
+ iou = total_area_intersect / total_area_union
260
+ acc = total_area_intersect / total_area_label
261
+
262
+ metrics["mean_iou"] = np.nanmean(iou)
263
+ metrics["mean_accuracy"] = np.nanmean(acc)
264
+ metrics["overall_accuracy"] = all_acc
265
+ metrics["per_category_iou"] = iou
266
+ metrics["per_category_accuracy"] = acc
267
+
268
+ if nan_to_num is not None:
269
+ metrics = dict(
270
+ {metric: np.nan_to_num(metric_value, nan=nan_to_num) for metric, metric_value in metrics.items()}
271
+ )
272
+
273
+ return metrics
274
+
275
+
276
+ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
277
+ class MeanIoU(evaluate.EvaluationModule):
278
+ def _info(self):
279
+ return evaluate.EvaluationModuleInfo(
280
+ description=_DESCRIPTION,
281
+ citation=_CITATION,
282
+ inputs_description=_KWARGS_DESCRIPTION,
283
+ features=datasets.Features(
284
+ # 1st Seq - height dim, 2nd - width dim
285
+ {
286
+ "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))),
287
+ "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))),
288
+ }
289
+ ),
290
+ reference_urls=[
291
+ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
292
+ ],
293
+ )
294
+
295
+ def _compute(
296
+ self,
297
+ predictions,
298
+ references,
299
+ num_labels: int,
300
+ ignore_index: bool,
301
+ nan_to_num: Optional[int] = None,
302
+ label_map: Optional[Dict[int, int]] = None,
303
+ reduce_labels: bool = False,
304
+ ):
305
+ iou_result = mean_iou(
306
+ results=predictions,
307
+ gt_seg_maps=references,
308
+ num_labels=num_labels,
309
+ ignore_index=ignore_index,
310
+ nan_to_num=nan_to_num,
311
+ label_map=label_map,
312
+ reduce_labels=reduce_labels,
313
+ )
314
+ return iou_result
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # TODO: fix github to release
2
+ git+https://github.com/huggingface/evaluate.git@b6e6ed7f3e6844b297bff1b43a1b4be0709b9671
3
+ datasets~=2.0