evanperez commited on
Commit
f4fd69a
1 Parent(s): 9c1c518

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -2
app.py CHANGED
@@ -1,4 +1,78 @@
1
  import streamlit as st
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
 
3
+ from PyPDF2 import PdfReader
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
+ import google.generativeai as genai
7
+ from langchain.vectorstores import FAISS
8
+ from langchain_google_genai import ChatGoogleGenerativeAI
9
+ from langchain.chains.question_answering import load_qa_chain
10
+ from langchain.prompts import PromptTemplate
11
+ import os
12
+
13
+
14
+ st.set_page_config(page_title="RAG Demo - Evan Perez", layout ="wide")
15
+
16
+ api_key = 'AIzaSyCvXRggpO2yNwIpZmoMy_5Xhm2bDyD-pOo'
17
+
18
+
19
+ def get_pdf_text(pdf_docs):
20
+ text = ""
21
+ for pdf in pdf_docs:
22
+ pdf_reader = PdfReader(pdf)
23
+ for page in pdf_reader.pages:
24
+ text += page.extract_text()
25
+ return text
26
+
27
+ def get_text_chunks(text):
28
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=50)
29
+ chunks = text_splitter.split_text(text)
30
+ return chunks
31
+
32
+ def get_vector_store(text_chunks, api_key):
33
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
34
+ vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
35
+ vector_store.save_local("faiss_index")
36
+
37
+ def get_conversational_chain():
38
+ prompt_template = """
39
+ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
40
+ provided context just say, "answer is not available in the context", don't provide the wrong answer. When giving an answer, try to include all mentionings of the subject being asked and include this within your response\n\n
41
+ Context:\n {context}?\n
42
+ Question: \n{question}\n
43
+
44
+ Answer:
45
+ """
46
+ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.2, google_api_key=api_key)
47
+ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
48
+ chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
49
+ return chain
50
+
51
+ def user_input(user_question, api_key):
52
+ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
53
+ new_db = FAISS.load_local("faiss_index", embeddings)
54
+ docs = new_db.similarity_search(user_question)
55
+ chain = get_conversational_chain()
56
+ response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
57
+ st.write("Reply: ", response["output_text"])
58
+
59
+ def main():
60
+ st.header("RAG based LLM Applicatoin")
61
+
62
+ user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
63
+
64
+ if user_question and api_key: # Ensure API key and user question are provided
65
+ user_input(user_question, api_key)
66
+
67
+ with st.sidebar:
68
+ st.title("Menu:")
69
+ pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
70
+ if st.button("Submit & Process", key="process_button") and api_key: # Check if API key is provided before processing
71
+ with st.spinner("Processing..."):
72
+ raw_text = get_pdf_text(pdf_docs)
73
+ text_chunks = get_text_chunks(raw_text)
74
+ get_vector_store(text_chunks, api_key)
75
+ st.success("Done")
76
+
77
+ if __name__ == "__main__":
78
+ main()