File size: 9,278 Bytes
37c870e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Model Support
This document describes how to support a new model in FastChat.

## Content
- [Local Models](#local-models)
- [API-Based Models](#api-based-models)

## Local Models
To support a new local model in FastChat, you need to correctly handle its prompt template and model loading.
The goal is to make the following command run with the correct prompts.

```
python3 -m fastchat.serve.cli --model [YOUR_MODEL_PATH]
```

You can run this example command to learn the code logic.

```
python3 -m fastchat.serve.cli --model lmsys/vicuna-7b-v1.5
```

You can add `--debug` to see the actual prompt sent to the model.

### Steps

FastChat uses the `Conversation` class to handle prompt templates and `BaseModelAdapter` class to handle model loading.

1. Implement a conversation template for the new model at [fastchat/conversation.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py). You can follow existing examples and use `register_conv_template` to add a new one. Please also add a link to the official reference code if possible.
2. Implement a model adapter for the new model at [fastchat/model/model_adapter.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/model/model_adapter.py). You can follow existing examples and use `register_model_adapter` to add a new one.
3. (Optional) add the model name to the "Supported models" [section](#supported-models) above and add more information in [fastchat/model/model_registry.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/model/model_registry.py).

After these steps, the new model should be compatible with most FastChat features, such as CLI, web UI, model worker, and OpenAI-compatible API server. Please do some testing with these features as well.

### Supported models

- [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
  - example: `python3 -m fastchat.serve.cli --model-path meta-llama/Llama-2-7b-chat-hf`
- Vicuna, Alpaca, LLaMA, Koala
  - example: `python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5`
- [allenai/tulu-2-dpo-7b](https://huggingface.co/allenai/tulu-2-dpo-7b)
- [BAAI/AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
- [BAAI/AquilaChat2-7B](https://huggingface.co/BAAI/AquilaChat2-7B)
- [BAAI/AquilaChat2-34B](https://huggingface.co/BAAI/AquilaChat2-34B)
- [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en#using-huggingface-transformers)
- [argilla/notus-7b-v1](https://huggingface.co/argilla/notus-7b-v1)
- [baichuan-inc/baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B)
- [BlinkDL/RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven)
  - example: `python3 -m fastchat.serve.cli --model-path ~/model_weights/RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth`
- [bofenghuang/vigogne-2-7b-instruct](https://huggingface.co/bofenghuang/vigogne-2-7b-instruct)
- [bofenghuang/vigogne-2-7b-chat](https://huggingface.co/bofenghuang/vigogne-2-7b-chat)
- [camel-ai/CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data)
- [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf)
- [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
- [deepseek-ai/deepseek-llm-67b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat)
- [deepseek-ai/deepseek-coder-33b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct)
- [FlagAlpha/Llama2-Chinese-13b-Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat)
- [FreedomIntelligence/phoenix-inst-chat-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b)
- [FreedomIntelligence/ReaLM-7b-v1](https://huggingface.co/FreedomIntelligence/Realm-7b)
- [h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b)
- [HuggingFaceH4/starchat-beta](https://huggingface.co/HuggingFaceH4/starchat-beta)
- [HuggingFaceH4/zephyr-7b-alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)
- [internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b)
- [cllm/consistency-llm-7b-codesearchnet/consistency-llm-7b-gsm8k/consistency-llm-7b-sharegpt48k/consistency-llm-7b-spider](https://huggingface.co/cllm)
- [IEITYuan/Yuan2-2B/51B/102B-hf](https://huggingface.co/IEITYuan)
- [lcw99/polyglot-ko-12.8b-chang-instruct-chat](https://huggingface.co/lcw99/polyglot-ko-12.8b-chang-instruct-chat)
- [lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5)
- [meta-math/MetaMath-7B-V1.0](https://huggingface.co/meta-math/MetaMath-7B-V1.0)
- [Microsoft/Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b)
- [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
  - example: `python3 -m fastchat.serve.cli --model-path mosaicml/mpt-7b-chat`
- [Neutralzz/BiLLa-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT)
- [nomic-ai/gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy)
- [NousResearch/Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b)
- [openaccess-ai-collective/manticore-13b-chat-pyg](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg)
- [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5)
- [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5)
- [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)
- [OpenLemur/lemur-70b-chat-v1](https://huggingface.co/OpenLemur/lemur-70b-chat-v1)
- [Phind/Phind-CodeLlama-34B-v2](https://huggingface.co/Phind/Phind-CodeLlama-34B-v2)
- [project-baize/baize-v2-7b](https://huggingface.co/project-baize/baize-v2-7b)
- [Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat)
- [rishiraj/CatPPT](https://huggingface.co/rishiraj/CatPPT)
- [Salesforce/codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b)
- [StabilityAI/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b)
- [tenyx/TenyxChat-7B-v1](https://huggingface.co/tenyx/TenyxChat-7B-v1)
- [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
- [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
- [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
- [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
- [tiiuae/falcon-180B-chat](https://huggingface.co/tiiuae/falcon-180B-chat)
- [timdettmers/guanaco-33b-merged](https://huggingface.co/timdettmers/guanaco-33b-merged)
- [togethercomputer/RedPajama-INCITE-7B-Chat](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat)
- [VMware/open-llama-7b-v2-open-instruct](https://huggingface.co/VMware/open-llama-7b-v2-open-instruct)
- [WizardLM/WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)
- [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0)
- [Xwin-LM/Xwin-LM-7B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1)
- Any [EleutherAI](https://huggingface.co/EleutherAI) pythia model such as [pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b)
- Any [Peft](https://github.com/huggingface/peft) adapter trained on top of a
  model above.  To activate, must have `peft` in the model path.  Note: If
  loading multiple peft models, you can have them share the base model weights by
  setting the environment variable `PEFT_SHARE_BASE_WEIGHTS=true` in any model
  worker.


## API-Based Models
To support an API-based model, consider learning from the existing OpenAI example.
If the model is compatible with OpenAI APIs, then a configuration file is all that's needed without any additional code.
For custom protocols, implementation of a streaming generator in [fastchat/serve/api_provider.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/api_provider.py) is required, following the provided examples. Currently, FastChat is compatible with OpenAI, Anthropic, Google Vertex AI, Mistral, Nvidia NGC, YandexGPT and Reka.

### Steps to Launch a WebUI with an API Model
1. Specify the endpoint information in a JSON configuration file. For instance, create a file named `api_endpoints.json`:
```json
{
  "gpt-3.5-turbo": {
    "model_name": "gpt-3.5-turbo",
    "api_type": "openai",
    "api_base": "https://api.openai.com/v1",
    "api_key": "sk-******",
    "anony_only": false,
    "recommended_config": {
      "temperature": 0.7,
      "top_p": 1.0
    },
    "text-arena": true,
    "vision-arena": false,
  }
}
```
  - "api_type" can be one of the following: openai, anthropic, gemini, mistral, yandexgpt or reka. For custom APIs, add a new type and implement it accordingly.
  - "anony_only" indicates whether to display this model in anonymous mode only.
  - "recommended_config" indicates the recommended generation parameters for temperature and top_p.
  - "text-arena" indicates whether the model should be displayed in the Text Arena.
  - "vision-arena" indicates whether the model should be displayed in the Vision Arena.

2. Launch the Gradio web server with the argument `--register api_endpoints.json`:
```
python3 -m fastchat.serve.gradio_web_server --controller "" --share --register api_endpoints.json
```

Now, you can open a browser and interact with the model.