File size: 9,278 Bytes
37c870e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Model Support
This document describes how to support a new model in FastChat.
## Content
- [Local Models](#local-models)
- [API-Based Models](#api-based-models)
## Local Models
To support a new local model in FastChat, you need to correctly handle its prompt template and model loading.
The goal is to make the following command run with the correct prompts.
```
python3 -m fastchat.serve.cli --model [YOUR_MODEL_PATH]
```
You can run this example command to learn the code logic.
```
python3 -m fastchat.serve.cli --model lmsys/vicuna-7b-v1.5
```
You can add `--debug` to see the actual prompt sent to the model.
### Steps
FastChat uses the `Conversation` class to handle prompt templates and `BaseModelAdapter` class to handle model loading.
1. Implement a conversation template for the new model at [fastchat/conversation.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py). You can follow existing examples and use `register_conv_template` to add a new one. Please also add a link to the official reference code if possible.
2. Implement a model adapter for the new model at [fastchat/model/model_adapter.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/model/model_adapter.py). You can follow existing examples and use `register_model_adapter` to add a new one.
3. (Optional) add the model name to the "Supported models" [section](#supported-models) above and add more information in [fastchat/model/model_registry.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/model/model_registry.py).
After these steps, the new model should be compatible with most FastChat features, such as CLI, web UI, model worker, and OpenAI-compatible API server. Please do some testing with these features as well.
### Supported models
- [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
- example: `python3 -m fastchat.serve.cli --model-path meta-llama/Llama-2-7b-chat-hf`
- Vicuna, Alpaca, LLaMA, Koala
- example: `python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5`
- [allenai/tulu-2-dpo-7b](https://huggingface.co/allenai/tulu-2-dpo-7b)
- [BAAI/AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
- [BAAI/AquilaChat2-7B](https://huggingface.co/BAAI/AquilaChat2-7B)
- [BAAI/AquilaChat2-34B](https://huggingface.co/BAAI/AquilaChat2-34B)
- [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en#using-huggingface-transformers)
- [argilla/notus-7b-v1](https://huggingface.co/argilla/notus-7b-v1)
- [baichuan-inc/baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B)
- [BlinkDL/RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven)
- example: `python3 -m fastchat.serve.cli --model-path ~/model_weights/RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth`
- [bofenghuang/vigogne-2-7b-instruct](https://huggingface.co/bofenghuang/vigogne-2-7b-instruct)
- [bofenghuang/vigogne-2-7b-chat](https://huggingface.co/bofenghuang/vigogne-2-7b-chat)
- [camel-ai/CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data)
- [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf)
- [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
- [deepseek-ai/deepseek-llm-67b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat)
- [deepseek-ai/deepseek-coder-33b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct)
- [FlagAlpha/Llama2-Chinese-13b-Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat)
- [FreedomIntelligence/phoenix-inst-chat-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b)
- [FreedomIntelligence/ReaLM-7b-v1](https://huggingface.co/FreedomIntelligence/Realm-7b)
- [h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b)
- [HuggingFaceH4/starchat-beta](https://huggingface.co/HuggingFaceH4/starchat-beta)
- [HuggingFaceH4/zephyr-7b-alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)
- [internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b)
- [cllm/consistency-llm-7b-codesearchnet/consistency-llm-7b-gsm8k/consistency-llm-7b-sharegpt48k/consistency-llm-7b-spider](https://huggingface.co/cllm)
- [IEITYuan/Yuan2-2B/51B/102B-hf](https://huggingface.co/IEITYuan)
- [lcw99/polyglot-ko-12.8b-chang-instruct-chat](https://huggingface.co/lcw99/polyglot-ko-12.8b-chang-instruct-chat)
- [lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5)
- [meta-math/MetaMath-7B-V1.0](https://huggingface.co/meta-math/MetaMath-7B-V1.0)
- [Microsoft/Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b)
- [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
- example: `python3 -m fastchat.serve.cli --model-path mosaicml/mpt-7b-chat`
- [Neutralzz/BiLLa-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT)
- [nomic-ai/gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy)
- [NousResearch/Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b)
- [openaccess-ai-collective/manticore-13b-chat-pyg](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg)
- [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5)
- [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5)
- [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)
- [OpenLemur/lemur-70b-chat-v1](https://huggingface.co/OpenLemur/lemur-70b-chat-v1)
- [Phind/Phind-CodeLlama-34B-v2](https://huggingface.co/Phind/Phind-CodeLlama-34B-v2)
- [project-baize/baize-v2-7b](https://huggingface.co/project-baize/baize-v2-7b)
- [Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat)
- [rishiraj/CatPPT](https://huggingface.co/rishiraj/CatPPT)
- [Salesforce/codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b)
- [StabilityAI/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b)
- [tenyx/TenyxChat-7B-v1](https://huggingface.co/tenyx/TenyxChat-7B-v1)
- [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
- [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
- [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
- [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
- [tiiuae/falcon-180B-chat](https://huggingface.co/tiiuae/falcon-180B-chat)
- [timdettmers/guanaco-33b-merged](https://huggingface.co/timdettmers/guanaco-33b-merged)
- [togethercomputer/RedPajama-INCITE-7B-Chat](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat)
- [VMware/open-llama-7b-v2-open-instruct](https://huggingface.co/VMware/open-llama-7b-v2-open-instruct)
- [WizardLM/WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)
- [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0)
- [Xwin-LM/Xwin-LM-7B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1)
- Any [EleutherAI](https://huggingface.co/EleutherAI) pythia model such as [pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b)
- Any [Peft](https://github.com/huggingface/peft) adapter trained on top of a
model above. To activate, must have `peft` in the model path. Note: If
loading multiple peft models, you can have them share the base model weights by
setting the environment variable `PEFT_SHARE_BASE_WEIGHTS=true` in any model
worker.
## API-Based Models
To support an API-based model, consider learning from the existing OpenAI example.
If the model is compatible with OpenAI APIs, then a configuration file is all that's needed without any additional code.
For custom protocols, implementation of a streaming generator in [fastchat/serve/api_provider.py](https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/api_provider.py) is required, following the provided examples. Currently, FastChat is compatible with OpenAI, Anthropic, Google Vertex AI, Mistral, Nvidia NGC, YandexGPT and Reka.
### Steps to Launch a WebUI with an API Model
1. Specify the endpoint information in a JSON configuration file. For instance, create a file named `api_endpoints.json`:
```json
{
"gpt-3.5-turbo": {
"model_name": "gpt-3.5-turbo",
"api_type": "openai",
"api_base": "https://api.openai.com/v1",
"api_key": "sk-******",
"anony_only": false,
"recommended_config": {
"temperature": 0.7,
"top_p": 1.0
},
"text-arena": true,
"vision-arena": false,
}
}
```
- "api_type" can be one of the following: openai, anthropic, gemini, mistral, yandexgpt or reka. For custom APIs, add a new type and implement it accordingly.
- "anony_only" indicates whether to display this model in anonymous mode only.
- "recommended_config" indicates the recommended generation parameters for temperature and top_p.
- "text-arena" indicates whether the model should be displayed in the Text Arena.
- "vision-arena" indicates whether the model should be displayed in the Vision Arena.
2. Launch the Gradio web server with the argument `--register api_endpoints.json`:
```
python3 -m fastchat.serve.gradio_web_server --controller "" --share --register api_endpoints.json
```
Now, you can open a browser and interact with the model.
|