import gradio as gr import pandas as pd import plotly.express as px from dataclasses import dataclass, field from typing import List, Dict, Tuple, Union import json import os from collections import OrderedDict import re @dataclass class ScorecardCategory: name: str questions: List[Dict[str, Union[str, List[str]]]] scores: Dict[str, int] = field(default_factory=dict) def extract_category_number(category_name: str) -> int: """Extract the category number from the category name.""" match = re.match(r'^(\d+)\.?\s*.*$', category_name) return int(match.group(1)) if match else float('inf') def sort_categories(categories): """Sort categories by their numeric prefix.""" return sorted(categories, key=extract_category_number) # def load_scorecard_templates(directory): # templates = [] # for filename in os.listdir(directory): # if filename.endswith('.json'): # with open(os.path.join(directory, filename), 'r') as file: # data = json.load(file) # templates.append(ScorecardCategory( # name=data['name'], # questions=data['questions'] # )) # return templates def create_category_summary(category_data): """Create a summary section for a category""" # Calculate statistics total_sections = len(category_data) completed_sections = sum(1 for section in category_data.values() if section['status'] == 'Yes') na_sections = sum(1 for section in category_data.values() if section['status'] == 'N/A') # Calculate completion rates total_questions = 0 completed_questions = 0 evaluation_types = set() has_human_eval = False has_quantitative = False has_documentation = False for section in category_data.values(): if section['status'] != 'N/A': questions = section.get('questions', {}) total_questions += len(questions) completed_questions += sum(1 for q in questions.values() if q) # Check for evaluation types for question in questions.keys(): if 'human' in question.lower(): has_human_eval = True if any(term in question.lower() for term in ['quantitative', 'metric', 'benchmark']): has_quantitative = True if 'documentation' in question.lower(): has_documentation = True completion_rate = (completed_questions / total_questions * 100) if total_questions > 0 else 0 # Create summary HTML html = "
" html += "
📊 Section Summary
" # Completion metrics html += "
" html += "
📈 Completion Metrics
" html += f"
Overall Completion Rate: {completion_rate:.1f}%
" html += f"
Sections Completed: {completed_sections}/{total_sections}
" html += "
" # Evaluation Coverage html += "
" html += "
🎯 Evaluation Coverage
" html += "
" html += f"
👥 Human Evaluation
" html += f"
📊 Quantitative Analysis
" html += f"
📝 Documentation
" html += "
" html += "
" # Status Breakdown html += "
" html += "
📋 Status Breakdown
" html += create_status_pills(category_data) html += "
" html += "
" return html def create_overall_summary(model_data, selected_categories): """Create a comprehensive summary of all categories""" scores = model_data['scores'] # Initialize counters total_sections = 0 completed_sections = 0 na_sections = 0 total_questions = 0 completed_questions = 0 # Track evaluation types across all categories evaluation_types = { 'human': 0, 'quantitative': 0, 'documentation': 0, 'monitoring': 0, 'transparency': 0 } # Calculate completion rates for categories category_completion = {} # Process all categories for category, category_data in scores.items(): if category not in selected_categories: continue # Skip unselected categories category_questions = 0 category_completed = 0 category_na = 0 total_sections_in_category = len(category_data) na_sections_in_category = sum(1 for section in category_data.values() if section['status'] == 'N/A') for section in category_data.values(): total_sections += 1 if section['status'] == 'Yes': completed_sections += 1 elif section['status'] == 'N/A': na_sections += 1 category_na += 1 if section['status'] != 'N/A': questions = section.get('questions', {}) section_total = len(questions) section_completed = sum(1 for q in questions.values() if q) total_questions += section_total completed_questions += section_completed category_questions += section_total category_completed += section_completed # Check for evaluation types for question in questions.keys(): if 'human' in question.lower(): evaluation_types['human'] += 1 if any(term in question.lower() for term in ['quantitative', 'metric', 'benchmark']): evaluation_types['quantitative'] += 1 if 'documentation' in question.lower(): evaluation_types['documentation'] += 1 if 'monitoring' in question.lower(): evaluation_types['monitoring'] += 1 if 'transparency' in question.lower(): evaluation_types['transparency'] += 1 # Store category information is_na = na_sections_in_category == total_sections_in_category completion_rate = (category_completed / category_questions * 100) if category_questions > 0 and not is_na else 0 category_completion[category] = { 'completion_rate': completion_rate, 'is_na': is_na } # Create summary HTML html = "
" html += "
📊 Overall Model Evaluation Summary
" # Key metrics section html += "
" # Overall completion metrics html += "
" html += "
📈 Overall Completion
" completion_rate = (completed_questions / total_questions * 100) if total_questions > 0 else 0 html += f"
Overall Completion Rate: {completion_rate:.1f}%
" html += f"
Sections Completed: {completed_sections}/{total_sections}
" html += f"
Questions Completed: {completed_questions}/{total_questions}
" html += "
" # Evaluation coverage html += "
" html += "
🎯 Evaluation Types Coverage
" html += "
" for eval_type, count in evaluation_types.items(): icon = { 'human': '👥', 'quantitative': '📊', 'documentation': '📝', 'monitoring': '📡', 'transparency': '🔍' }.get(eval_type, '❓') has_coverage = count > 0 html += f"
{icon} {eval_type.title()}
" html += "
" html += "
" html += "
" # End summary-grid # Category breakdown html += "
" html += "
📋 Category Completion Breakdown
" html += "
" # Sort and filter categories sorted_categories = [cat for cat in sort_categories(scores.keys()) if cat in selected_categories] for category in sorted_categories: info = category_completion[category] category_name = category.split('. ', 1)[1] if '. ' in category else category # Determine display text and style if info['is_na']: completion_text = "N/A" bar_width = "0" style_class = "na" else: completion_text = f"{info['completion_rate']:.1f}%" bar_width = f"{info['completion_rate']}" style_class = "active" html += f"""
{category_name}
{completion_text}
""" html += "
" html += "
" # End overall-summary-card return html def get_coverage_class(has_feature): """Return CSS class based on feature presence""" return 'covered' if has_feature else 'not-covered' def create_status_pills(category_data): """Create status pill indicators""" status_counts = {'Yes': 0, 'No': 0, 'N/A': 0} for section in category_data.values(): status_counts[section['status']] += 1 html = "
" for status, count in status_counts.items(): html += f"
{status}: {count}
" html += "
" return html def get_modality_icon(modality): """Return an emoji icon for each modality type.""" icons = { "Text-to-Text": "📝", # Memo icon for text-to-text "Text-to-Image": "🎨", # Artist palette for text-to-image "Image-to-Text": "🔍", # Magnifying glass for image-to-text "Image-to-Image": "🖼️", # Frame for image-to-image "Audio": "🎵", # Musical note for audio "Video": "🎬", # Clapper board for video "Multimodal": "🔄" # Cycle arrows for multimodal } return icons.get(modality, "💫") # Default icon if modality not found def create_metadata_card(metadata): """Create a formatted HTML card for metadata.""" html = "
" html += "
Model Information
" html += "
" # Handle special formatting for modalities modalities = metadata.get("Modalities", []) formatted_modalities = "" if modalities: formatted_modalities = " ".join( f"{get_modality_icon(m)} {m}" for m in modalities ) # Order of metadata display (customize as needed) display_order = ["Name", "Provider", "Type", "URL"] # Display ordered metadata first for key in display_order: if key in metadata: value = metadata[key] if key == "URL": html += f"" else: html += f"" # Add modalities if present if formatted_modalities: html += f"" # Add any remaining metadata not in display_order for key, value in metadata.items(): if key not in display_order and key != "Modalities": html += f"" html += "
" return html def load_models_from_json(directory): models = {} for filename in os.listdir(directory): if filename.endswith('.json'): with open(os.path.join(directory, filename), 'r') as file: model_data = json.load(file) model_name = model_data['metadata']['Name'] models[model_name] = model_data return OrderedDict(sorted(models.items(), key=lambda x: x[0].lower())) # Load templates and models # scorecard_template = load_scorecard_templates('scorecard_templates') models = load_models_from_json('model_data') def create_source_html(sources): if not sources: return "" html = "
" for source in sources: icon = source.get("type", "") detail = source.get("detail", "") name = source.get("name", detail) html += f"
{icon} " if detail.startswith("http"): html += f"{name}" else: html += name html += "
" html += "
" return html def create_leaderboard(selected_categories): scores = [] for model, data in models.items(): total_score = 0 total_questions = 0 score_by_category = {} # Calculate scores by category for category_name, category in data['scores'].items(): category_score = 0 category_total = 0 for section in category.values(): if section['status'] != 'N/A': questions = section.get('questions', {}) category_score += sum(1 for q in questions.values() if q) category_total += len(questions) if category_total > 0: score_by_category[category_name] = (category_score / category_total) * 100 total_score += category_score total_questions += category_total # Calculate overall score score_percentage = (total_score / total_questions * 100) if total_questions > 0 else 0 # Get model type model_type = data['metadata'].get('Type', 'Unknown') # Create entry with numerical scores model_entry = { 'AI System': model, 'Type': model_type, 'Overall Completion Rate': score_percentage } # Add selected category scores with emojis category_map = { '1. Bias, Stereotypes, and Representational Harms Evaluation': '⚖️ Bias and Fairness', '2. Cultural Values and Sensitive Content Evaluation': '🌍 Cultural Values', '3. Disparate Performance Evaluation': '📊 Disparate Performance', '4. Environmental Costs and Carbon Emissions Evaluation': '🌱 Environmental Impact', '5. Privacy and Data Protection Evaluation': '🔒 Privacy', '6. Financial Costs Evaluation': '💰 Financial Costs', '7. Data and Content Moderation Labor Evaluation': '👥 Labor Practices' } for full_cat_name, display_name in category_map.items(): if full_cat_name in selected_categories: score = score_by_category.get(full_cat_name, 0) model_entry[display_name] = score scores.append(model_entry) # Convert to DataFrame df = pd.DataFrame(scores) # Sort by Overall Completion Rate descending df = df.sort_values('Overall Completion Rate', ascending=False) # Add rank column based on current sort df.insert(0, 'Rank', range(1, len(df) + 1)) # Format scores with % after sorting numeric_columns = ['Overall Completion Rate'] + list(category_map.values()) for col in df.columns: if col in numeric_columns: df[col] = df[col].apply(lambda x: f"{x:.1f}%") return df first_model = next(iter(models.values())) category_choices = list(first_model['scores'].keys()) with gr.Column(visible=True) as leaderboard_tab: leaderboard_output = gr.DataFrame( value=create_leaderboard(category_choices), # Initialize with all categories selected interactive=False, wrap=True ) def create_category_chart(selected_models, selected_categories): if not selected_models: return px.bar(title='Please select at least one model for comparison') # Sort categories before processing selected_categories = sort_categories(selected_categories) data = [] for model in selected_models: for category in selected_categories: if category in models[model]['scores']: total_score = 0 total_questions = 0 for section in models[model]['scores'][category].values(): if section['status'] != 'N/A': questions = section.get('questions', {}) total_score += sum(1 for q in questions.values() if q) total_questions += len(questions) score_percentage = (total_score / total_questions * 100) if total_questions > 0 else 0 data.append({ 'Model': model, 'Category': category, 'Score Percentage': score_percentage }) df = pd.DataFrame(data) if df.empty: return px.bar(title='No data available for the selected models and categories') fig = px.bar(df, x='Model', y='Score Percentage', color='Category', title='AI Model Scores by Category', labels={'Score Percentage': 'Score Percentage'}, category_orders={"Category": selected_categories}) return fig def update_detailed_scorecard(model, selected_categories): if not model: return [ gr.update(value="Please select a model to view details.", visible=True), gr.update(visible=False), gr.update(visible=False) ] selected_categories = sort_categories(selected_categories) metadata_html = create_metadata_card(models[model]['metadata']) overall_summary_html = create_overall_summary(models[model], selected_categories) # Combine metadata and overall summary combined_header = metadata_html + overall_summary_html total_yes = 0 total_no = 0 total_na = 0 has_non_na = False # Create category cards all_cards_content = "
" for category_name in selected_categories: if category_name in models[model]['scores']: category_data = models[model]['scores'][category_name] card_content = f"
{category_name}
" # Add category-specific summary at the top of each card card_content += create_category_summary(category_data) # Sort sections within each category sorted_sections = sorted(category_data.items(), key=lambda x: float(re.match(r'^(\d+\.?\d*)', x[0]).group(1))) category_yes = 0 category_no = 0 category_na = 0 for section, details in sorted_sections: status = details['status'] if status != 'N/A': has_non_na = True sources = details.get('sources', []) questions = details.get('questions', {}) section_class = "section-na" if status == "N/A" else "section-active" status_class = status.lower() status_icon = "●" if status == "Yes" else "○" if status == "N/A" else "×" card_content += f"
" card_content += f"

{section}

" card_content += f"{status_icon} {status}
" if sources: card_content += "
" for source in sources: icon = source.get("type", "") detail = source.get("detail", "") name = source.get("name", detail) card_content += f"
{icon} " if detail.startswith("http"): card_content += f"{name}" else: card_content += name card_content += "
" card_content += "
" if questions: yes_count = sum(1 for v in questions.values() if v) total_count = len(questions) card_content += "
" if status == "N/A": card_content += f"View {total_count} N/A items" else: card_content += f"View details ({yes_count}/{total_count} completed)" card_content += "
" for question, is_checked in questions.items(): if status == "N/A": style_class = "na" icon = "○" category_na += 1 total_na += 1 else: if is_checked: style_class = "checked" icon = "✓" category_yes += 1 total_yes += 1 else: style_class = "unchecked" icon = "✗" category_no += 1 total_no += 1 card_content += f"
{icon} {question}
" card_content += "
" card_content += "
" if category_yes + category_no > 0: category_score = category_yes / (category_yes + category_no) * 100 card_content += f"
Completion Score Breakdown: {category_score:.2f}% Yes: {category_yes}, No: {category_no}, N/A: {category_na}
" elif category_na > 0: card_content += f"
Completion Score Breakdown: N/A (All {category_na} items not applicable)
" card_content += "
" all_cards_content += card_content all_cards_content += "
" # Create total score if not has_non_na: total_score_md = "
No applicable scores (all items N/A)
" elif total_yes + total_no > 0: total_score = total_yes / (total_yes + total_no) * 100 total_score_md = f"
Total Score: {total_score:.2f}% (Yes: {total_yes}, No: {total_no}, N/A: {total_na})
" else: total_score_md = "
No applicable scores (all items N/A)
" return [ gr.update(value=combined_header, visible=True), gr.update(value=all_cards_content, visible=True), gr.update(value=total_score_md, visible=True) ] css = """ .container { display: flex; flex-wrap: wrap; justify-content: space-between; } .container.svelte-1hfxrpf.svelte-1hfxrpf { height: 0%; } .card { width: calc(50% - 20px); border: 1px solid #e0e0e0; border-radius: 10px; padding: 20px; margin-bottom: 20px; background-color: #ffffff; box-shadow: 0 4px 6px rgba(0,0,0,0.1); transition: all 0.3s ease; } .card:hover { box-shadow: 0 6px 8px rgba(0,0,0,0.15); transform: translateY(-5px); } .card-title { font-size: 1.4em; font-weight: bold; margin-bottom: 15px; color: #333; border-bottom: 2px solid #e0e0e0; padding-bottom: 10px; } .sources-list { margin: 10px 0; } .source-item { margin: 5px 0; padding: 5px; background-color: #f8f9fa; border-radius: 4px; } .question-item { margin: 5px 0; padding: 8px; border-radius: 4px; } .question-item.checked { background-color: #e6ffe6; } .question-item.unchecked { background-color: #ffe6e6; } .category-score, .total-score { background-color: #f0f8ff; border: 1px solid #b0d4ff; border-radius: 5px; padding: 10px; margin-top: 15px; font-weight: bold; text-align: center; } .total-score { font-size: 1.2em; background-color: #e6f3ff; border-color: #80bdff; } .leaderboard-card { width: 100%; max-width: 800px; margin: 0 auto; } .leaderboard-table { width: 100%; border-collapse: collapse; } .leaderboard-table th, .leaderboard-table td { padding: 10px; text-align: left; border-bottom: 1px solid #e0e0e0; } .leaderboard-table th { background-color: #f2f2f2; font-weight: bold; } .section { margin-bottom: 20px; padding: 15px; border-radius: 5px; background-color: #f8f9fa; } @media (max-width: 768px) { .card { width: 100%; } } .dark { background-color: #1a1a1a; color: #e0e0e0; .card { background-color: #2a2a2a; border-color: #444; } .card-title { color: #fff; border-bottom-color: #444; } .source-item { background-color: #2a2a2a; } .question-item.checked { background-color: #1a3a1a; } .question-item.unchecked { background-color: #3a1a1a; } .section { background-color: #2a2a2a; } .category-score, .total-score { background-color: #2c3e50; border-color: #34495e; } .leaderboard-table th { background-color: #2c3e50; } } .section-na { opacity: 0.6; } .question-item.na { background-color: #f0f0f0; color: #666; } .dark .question-item.na { background-color: #2d2d2d; color: #999; } .section-header { display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px; } .status-badge { font-size: 0.9em; padding: 4px 8px; border-radius: 12px; font-weight: 500; } .status-badge.yes { background-color: #e6ffe6; color: #006600; } .status-badge.no { background-color: #ffe6e6; color: #990000; } .status-badge.n\/a { background-color: #f0f0f0; color: #666666; } .question-accordion { margin-top: 10px; } .question-accordion summary { cursor: pointer; padding: 8px; background-color: #f8f9fa; border-radius: 4px; margin-bottom: 10px; font-weight: 500; } .question-accordion summary:hover { background-color: #e9ecef; } .dark .status-badge.yes { background-color: #1a3a1a; color: #90EE90; } .dark .status-badge.no { background-color: #3a1a1a; color: #FFB6B6; } .dark .status-badge.n\/a { background-color: #2d2d2d; color: #999999; } .dark .question-accordion summary { background-color: #2a2a2a; } .dark .question-accordion summary:hover { background-color: #333333; } .metadata-card { margin-bottom: 30px; width: 100% !important; } .metadata-content { display: flex; flex-direction: column; gap: 12px; } .metadata-row { display: flex; align-items: flex-start; gap: 10px; line-height: 1.5; } .metadata-label { font-weight: 600; min-width: 100px; color: #555; } .metadata-value { color: #333; } .metadata-link { color: #007bff; text-decoration: none; } .metadata-link:hover { text-decoration: underline; } .modality-container { display: flex; flex-wrap: wrap; gap: 8px; } .modality-badge { display: inline-flex; align-items: center; gap: 4px; padding: 4px 10px; background-color: #f0f7ff; border: 1px solid #cce3ff; border-radius: 15px; font-size: 0.9em; color: #0066cc; } .dark .metadata-label { color: #aaa; } .dark .metadata-value { color: #ddd; } .dark .metadata-link { color: #66b3ff; } .dark .modality-badge { background-color: #1a2733; border-color: #2c3e50; color: #99ccff; } .summary-card { background-color: #f8f9fa; border: 1px solid #e0e0e0; border-radius: 8px; padding: 16px; margin-bottom: 20px; } .summary-title { font-size: 1.2em; font-weight: bold; margin-bottom: 12px; color: #333; } .summary-section { margin-bottom: 16px; } .summary-subtitle { font-size: 1em; font-weight: 600; color: #555; margin-bottom: 8px; } .metric-row { display: flex; justify-content: space-between; align-items: center; margin-bottom: 4px; } .metric-label { color: #666; } .metric-value { font-weight: 600; color: #333; } .coverage-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(150px, 1fr)); gap: 8px; margin-top: 8px; } .coverage-item { padding: 8px; border-radius: 6px; text-align: center; font-size: 0.9em; } .coverage-item.covered { background-color: #e6ffe6; color: #006600; border: 1px solid #b3ffb3; } .coverage-item.not-covered { background-color: #f5f5f5; color: #666; border: 1px solid #ddd; } .status-pills { display: flex; gap: 8px; flex-wrap: wrap; } .status-pill { padding: 4px 12px; border-radius: 16px; font-size: 0.9em; font-weight: 500; } .status-pill.yes { background-color: #e6ffe6; color: #006600; border: 1px solid #b3ffb3; } .status-pill.no { background-color: #ffe6e6; color: #990000; border: 1px solid #ffb3b3; } .status-pill.n\\/a { background-color: #f5f5f5; color: #666; border: 1px solid #ddd; } .dark .summary-card { background-color: #2a2a2a; border-color: #444; } .dark .summary-title, .dark .summary-subtitle { color: #e0e0e0; } .dark .metric-label { color: #999; } .dark .metric-value { color: #fff; } .dark .coverage-item.covered { background-color: #1a3a1a; color: #90EE90; border-color: #2d5a2d; } .dark .coverage-item.not-covered { background-color: #333; color: #999; border-color: #444; } .dark .status-pill.yes { background-color: #1a3a1a; color: #90EE90; border-color: #2d5a2d; } .dark .status-pill.no { background-color: #3a1a1a; color: #FFB6B6; border-color: #5a2d2d; } .dark .status-pill.n\\/a { background-color: #333; color: #999; border-color: #444; } .overall-summary-card { width: 100% !important; margin-bottom: 30px; } .summary-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin-bottom: 20px; } .category-completion-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 16px; margin-top: 12px; } .category-completion-item { display: flex; flex-direction: column; background-color: #f8f9fa; border-radius: 8px; padding: 12px; min-height: 86px; /* Set consistent height */ } .category-name { flex: 1; font-size: 0.9em; font-weight: 500; color: #555; margin-bottom: 8px; line-height: 1.3; } .completion-bar-container { height: 24px; background-color: #eee; border-radius: 12px; position: relative; overflow: hidden; margin-top: auto; /* Push to bottom */ } .completion-bar { height: 100%; background-color: #4CAF50; transition: width 0.3s ease; } .completion-text { position: absolute; right: 8px; top: 50%; transform: translateY(-50%); font-size: 0.8em; font-weight: 600; color: #333; } /* Dark mode adjustments */ .dark .category-completion-item { background-color: #2a2a2a; } .dark .category-name { color: #ccc; } .dark .completion-bar-container { background-color: #333; } .dark .completion-bar { background-color: #2e7d32; } .dark .completion-text { color: #fff; } .completion-bar-container.na { background-color: #f0f0f0; } .completion-bar-container.na .completion-bar { background-color: #999; width: 0 !important; } .dark .completion-bar-container.na { background-color: #2d2d2d; } .dark .completion-bar-container.na .completion-bar { background-color: #666; } .leaderboard-filters { margin-bottom: 20px; padding: 15px; background-color: #f8f9fa; border-radius: 8px; } .dark .leaderboard-filters { background-color: #2a2a2a; } .filter-group { margin-bottom: 10px; } .filter-label { font-weight: 600; margin-bottom: 5px; display: block; } .score-column { background-color: #f0f7ff; } .dark .score-column { background-color: #1a2733; } .metric-header { font-size: 0.9em; color: #666; text-align: center; } .dark .metric-header { color: #aaa; } .table-container { overflow-x: auto; } .leaderboard-table td { white-space: nowrap; } .score-cell { text-align: right; padding-right: 15px !important; } .model-cell { max-width: 300px; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; } .leaderboard-table { width: 100%; border-collapse: collapse; } .leaderboard-table th, .leaderboard-table td { padding: 10px; text-align: left; border: 1px solid #e0e0e0; } .dark .leaderboard-table th, .dark .leaderboard-table td { border-color: #444; } .leaderboard-table th { background-color: #f2f2f2; font-weight: bold; } .dark .leaderboard-table th { background-color: #2c3e50; } .leaderboard-table tr:hover { background-color: #f5f5f5; } .dark .leaderboard-table tr:hover { background-color: #2d2d2d; } """ first_model = next(iter(models.values())) category_choices = list(first_model['scores'].keys()) with gr.Blocks(css=css) as demo: gr.Markdown("# AI Model Social Impact Scorecard Dashboard") with gr.Row(): tab_selection = gr.Radio(["Leaderboard", "Category Analysis", "Detailed Scorecard"], label="Select Tab", value="Leaderboard") with gr.Row(): model_chooser = gr.Dropdown(choices=[""] + list(models.keys()), label="Select Model for Details", value="", interactive=True, visible=False) model_multi_chooser = gr.Dropdown(choices=list(models.keys()), label="Select Models for Comparison", value=[], multiselect=True, interactive=True, visible=False, info="Select one or more models") # Category filter now visible for all tabs category_filter = gr.CheckboxGroup(choices=category_choices, label="Filter Categories", value=category_choices) with gr.Column(visible=True) as leaderboard_tab: leaderboard_output = gr.DataFrame( value=create_leaderboard(category_filter.value), # Initialize with all categories selected interactive=False, wrap=True ) with gr.Column(visible=False) as category_analysis_tab: category_chart = gr.Plot() with gr.Column(visible=False) as detailed_scorecard_tab: model_metadata = gr.HTML() all_category_cards = gr.HTML() total_score = gr.Markdown() # Initialize the dashboard def init_leaderboard(): df = create_leaderboard(category_filter.value) return df leaderboard_output.value = init_leaderboard() # Update handlers def update_dashboard(tab, selected_models, selected_model, selected_categories): leaderboard_visibility = gr.update(visible=False) category_chart_visibility = gr.update(visible=False) detailed_scorecard_visibility = gr.update(visible=False) model_chooser_visibility = gr.update(visible=False) model_multi_chooser_visibility = gr.update(visible=False) if tab == "Leaderboard": leaderboard_visibility = gr.update(visible=True) df = create_leaderboard(selected_categories) return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility, model_chooser_visibility, model_multi_chooser_visibility, gr.update(value=df), gr.update(), gr.update(), gr.update(), gr.update()] elif tab == "Category Analysis": category_chart_visibility = gr.update(visible=True) model_multi_chooser_visibility = gr.update(visible=True) category_filter_visibility = gr.update(visible=True) category_plot = create_category_chart(selected_models or [], selected_categories) return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility, model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility, None, gr.update(value=category_plot), gr.update(), gr.update(), gr.update()] elif tab == "Detailed Scorecard": detailed_scorecard_visibility = gr.update(visible=True) model_chooser_visibility = gr.update(visible=True) category_filter_visibility = gr.update(visible=True) if selected_model: scorecard_updates = update_detailed_scorecard(selected_model, selected_categories) else: scorecard_updates = [ gr.update(value="Please select a model to view details.", visible=True), gr.update(visible=False), gr.update(visible=False) ] return [leaderboard_visibility, category_chart_visibility, detailed_scorecard_visibility, model_chooser_visibility, model_multi_chooser_visibility, category_filter_visibility, None, None] + scorecard_updates # Set up event handlers tab_selection.change( fn=update_dashboard, inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, model_chooser, model_multi_chooser, leaderboard_output, category_chart, model_metadata, all_category_cards, total_score] ) model_chooser.change( fn=update_dashboard, inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, model_chooser, model_multi_chooser, category_filter, leaderboard_output, category_chart, model_metadata, all_category_cards, total_score] ) model_multi_chooser.change( fn=update_dashboard, inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, model_chooser, model_multi_chooser, category_filter, leaderboard_output, category_chart, model_metadata, all_category_cards, total_score] ) category_filter.change( fn=update_dashboard, inputs=[tab_selection, model_multi_chooser, model_chooser, category_filter], outputs=[leaderboard_tab, category_analysis_tab, detailed_scorecard_tab, model_chooser, model_multi_chooser, leaderboard_output, category_chart, model_metadata, all_category_cards, total_score] ) # Launch the app if __name__ == "__main__": demo.launch()