Spaces:
Running
on
A100
Running
on
A100
Avijit Ghosh
commited on
Commit
•
f56644b
1
Parent(s):
64fe77f
playing around with model options
Browse files- app copy.py +149 -0
- app.py +48 -19
- test.ipynb +277 -0
app copy.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import AutoPipelineForText2Image
|
4 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
5 |
+
from pathlib import Path
|
6 |
+
import stone
|
7 |
+
import requests
|
8 |
+
import io
|
9 |
+
import os
|
10 |
+
from PIL import Image
|
11 |
+
import spaces
|
12 |
+
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import numpy as np
|
15 |
+
from matplotlib.colors import hex2color
|
16 |
+
|
17 |
+
|
18 |
+
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
|
19 |
+
"stabilityai/sdxl-turbo",
|
20 |
+
torch_dtype=torch.float16,
|
21 |
+
variant="fp16",
|
22 |
+
)
|
23 |
+
pipeline_text2image = pipeline_text2image.to("cuda")
|
24 |
+
|
25 |
+
|
26 |
+
@spaces.GPU
|
27 |
+
def getimgen(prompt):
|
28 |
+
|
29 |
+
return pipeline_text2image(
|
30 |
+
prompt=prompt,
|
31 |
+
guidance_scale=0.0,
|
32 |
+
num_inference_steps=2
|
33 |
+
).images[0]
|
34 |
+
|
35 |
+
|
36 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
37 |
+
blip_model = BlipForConditionalGeneration.from_pretrained(
|
38 |
+
"Salesforce/blip-image-captioning-large",
|
39 |
+
torch_dtype=torch.float16
|
40 |
+
).to("cuda")
|
41 |
+
|
42 |
+
|
43 |
+
@spaces.GPU
|
44 |
+
def blip_caption_image(image, prefix):
|
45 |
+
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
46 |
+
out = blip_model.generate(**inputs)
|
47 |
+
return blip_processor.decode(out[0], skip_special_tokens=True)
|
48 |
+
|
49 |
+
def genderfromcaption(caption):
|
50 |
+
cc = caption.split()
|
51 |
+
if "man" in cc or "boy" in cc:
|
52 |
+
return "Man"
|
53 |
+
elif "woman" in cc or "girl" in cc:
|
54 |
+
return "Woman"
|
55 |
+
return "Unsure"
|
56 |
+
|
57 |
+
def genderplot(genlist):
|
58 |
+
order = ["Man", "Woman", "Unsure"]
|
59 |
+
|
60 |
+
# Sort the list based on the order of keys
|
61 |
+
words = sorted(genlist, key=lambda x: order.index(x))
|
62 |
+
|
63 |
+
# Define colors for each category
|
64 |
+
colors = {"Man": "lightgreen", "Woman": "darkgreen", "Unsure": "lightgrey"}
|
65 |
+
|
66 |
+
# Map each word to its corresponding color
|
67 |
+
word_colors = [colors[word] for word in words]
|
68 |
+
|
69 |
+
# Plot the colors in a grid with reduced spacing
|
70 |
+
fig, axes = plt.subplots(2, 5, figsize=(5,5))
|
71 |
+
|
72 |
+
# Adjust spacing between subplots
|
73 |
+
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
74 |
+
|
75 |
+
for i, ax in enumerate(axes.flat):
|
76 |
+
ax.set_axis_off()
|
77 |
+
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=word_colors[i]))
|
78 |
+
|
79 |
+
return fig
|
80 |
+
|
81 |
+
def skintoneplot(hex_codes):
|
82 |
+
# Convert hex codes to RGB values
|
83 |
+
rgb_values = [hex2color(hex_code) for hex_code in hex_codes]
|
84 |
+
|
85 |
+
# Calculate luminance for each color
|
86 |
+
luminance_values = [0.299 * r + 0.587 * g + 0.114 * b for r, g, b in rgb_values]
|
87 |
+
|
88 |
+
# Sort hex codes based on luminance in descending order (dark to light)
|
89 |
+
sorted_hex_codes = [code for _, code in sorted(zip(luminance_values, hex_codes), reverse=True)]
|
90 |
+
|
91 |
+
# Plot the colors in a grid with reduced spacing
|
92 |
+
fig, axes = plt.subplots(2, 5, figsize=(5,5))
|
93 |
+
|
94 |
+
# Adjust spacing between subplots
|
95 |
+
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
96 |
+
|
97 |
+
for i, ax in enumerate(axes.flat):
|
98 |
+
ax.set_axis_off()
|
99 |
+
ax.add_patch(plt.Rectangle((0, 0), 1, 1, color=sorted_hex_codes[i]))
|
100 |
+
|
101 |
+
return fig
|
102 |
+
|
103 |
+
@spaces.GPU
|
104 |
+
def generate_images_plots(prompt):
|
105 |
+
foldername = "temp"
|
106 |
+
# Generate 10 images
|
107 |
+
images = [getimgen(prompt) for _ in range(10)]
|
108 |
+
|
109 |
+
Path(foldername).mkdir(parents=True, exist_ok=True)
|
110 |
+
|
111 |
+
genders = []
|
112 |
+
skintones = []
|
113 |
+
|
114 |
+
for image, i in zip(images, range(10)):
|
115 |
+
prompt_prefix = "photo of a "
|
116 |
+
caption = blip_caption_image(image, prefix=prompt_prefix)
|
117 |
+
image.save(f"{foldername}/image_{i}.png")
|
118 |
+
try:
|
119 |
+
skintoneres = stone.process(f"{foldername}/image_{i}.png", return_report_image=False)
|
120 |
+
tone = skintoneres['faces'][0]['dominant_colors'][0]['color']
|
121 |
+
skintones.append(tone)
|
122 |
+
except:
|
123 |
+
skintones.append(None)
|
124 |
+
|
125 |
+
genders.append(genderfromcaption(caption))
|
126 |
+
|
127 |
+
print(genders, skintones)
|
128 |
+
|
129 |
+
return images, skintoneplot(skintones), genderplot(genders)
|
130 |
+
|
131 |
+
|
132 |
+
with gr.Blocks(title = "Skin Tone and Gender bias in SDXL Demo - Inference API") as demo:
|
133 |
+
|
134 |
+
gr.Markdown("# Skin Tone and Gender bias in SDXL Demo")
|
135 |
+
|
136 |
+
prompt = gr.Textbox(label="Enter the Prompt")
|
137 |
+
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery",
|
138 |
+
columns=[5], rows=[2], object_fit="contain", height="auto")
|
139 |
+
btn = gr.Button("Generate images", scale=0)
|
140 |
+
with gr.Row(equal_height=True):
|
141 |
+
skinplot = gr.Plot(label="Skin Tone")
|
142 |
+
genplot = gr.Plot(label="Gender")
|
143 |
+
|
144 |
+
|
145 |
+
btn.click(generate_images_plots, inputs = prompt, outputs = [gallery, skinplot, genplot])
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
demo.launch(debug=True)
|
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import AutoPipelineForText2Image
|
|
|
4 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
5 |
from pathlib import Path
|
6 |
import stone
|
@@ -13,16 +14,41 @@ import spaces
|
|
13 |
import matplotlib.pyplot as plt
|
14 |
import numpy as np
|
15 |
from matplotlib.colors import hex2color
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
)
|
23 |
pipeline_text2image = pipeline_text2image.to("cuda")
|
24 |
|
25 |
-
|
26 |
@spaces.GPU
|
27 |
def getimgen(prompt):
|
28 |
|
@@ -32,14 +58,12 @@ def getimgen(prompt):
|
|
32 |
num_inference_steps=2
|
33 |
).images[0]
|
34 |
|
35 |
-
|
36 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
37 |
blip_model = BlipForConditionalGeneration.from_pretrained(
|
38 |
"Salesforce/blip-image-captioning-large",
|
39 |
torch_dtype=torch.float16
|
40 |
).to("cuda")
|
41 |
|
42 |
-
|
43 |
@spaces.GPU
|
44 |
def blip_caption_image(image, prefix):
|
45 |
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
@@ -101,7 +125,15 @@ def skintoneplot(hex_codes):
|
|
101 |
return fig
|
102 |
|
103 |
@spaces.GPU
|
104 |
-
def generate_images_plots(prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
foldername = "temp"
|
106 |
# Generate 10 images
|
107 |
images = [getimgen(prompt) for _ in range(10)]
|
@@ -128,11 +160,11 @@ def generate_images_plots(prompt):
|
|
128 |
|
129 |
return images, skintoneplot(skintones), genderplot(genders)
|
130 |
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
gr.Markdown("# Skin Tone and Gender bias in SDXL Demo")
|
135 |
|
|
|
136 |
prompt = gr.Textbox(label="Enter the Prompt")
|
137 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery",
|
138 |
columns=[5], rows=[2], object_fit="contain", height="auto")
|
@@ -141,9 +173,6 @@ with gr.Blocks(title = "Skin Tone and Gender bias in SDXL Demo - Inference API")
|
|
141 |
skinplot = gr.Plot(label="Skin Tone")
|
142 |
genplot = gr.Plot(label="Gender")
|
143 |
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
# from diffusers import AutoPipelineForText2Image
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
6 |
from pathlib import Path
|
7 |
import stone
|
|
|
14 |
import matplotlib.pyplot as plt
|
15 |
import numpy as np
|
16 |
from matplotlib.colors import hex2color
|
17 |
+
from huggingface_hub import list_models
|
18 |
+
|
19 |
+
# Fetch models from Hugging Face Hub
|
20 |
+
models = list_models(task="text-to-image")
|
21 |
+
## Step 1: Filter the models
|
22 |
+
filtered_models = [model for model in models if model.library_name == "diffusers"]
|
23 |
+
|
24 |
+
# Step 2: Sort the filtered models by downloads in descending order
|
25 |
+
sorted_models = sorted(filtered_models, key=lambda x: x.downloads, reverse=True)
|
26 |
+
|
27 |
+
# Step 3: Select the top 5 models with only one model per company
|
28 |
+
top_models = []
|
29 |
+
companies_seen = set()
|
30 |
+
|
31 |
+
for model in sorted_models:
|
32 |
+
company_name = model.id.split('/')[0] # Assuming the company name is the first part of the model id
|
33 |
+
if company_name not in companies_seen:
|
34 |
+
top_models.append(model)
|
35 |
+
companies_seen.add(company_name)
|
36 |
+
if len(top_models) == 5:
|
37 |
+
break
|
38 |
+
|
39 |
+
# Get the ids of the top models
|
40 |
+
model_names = [model.id for model in top_models]
|
41 |
+
|
42 |
+
print(model_names)
|
43 |
+
|
44 |
+
# Initial pipeline setup
|
45 |
+
default_model = model_names[0]
|
46 |
+
print(default_model)
|
47 |
+
pipeline_text2image = DiffusionPipeline.from_pretrained(
|
48 |
+
default_model
|
49 |
)
|
50 |
pipeline_text2image = pipeline_text2image.to("cuda")
|
51 |
|
|
|
52 |
@spaces.GPU
|
53 |
def getimgen(prompt):
|
54 |
|
|
|
58 |
num_inference_steps=2
|
59 |
).images[0]
|
60 |
|
|
|
61 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
62 |
blip_model = BlipForConditionalGeneration.from_pretrained(
|
63 |
"Salesforce/blip-image-captioning-large",
|
64 |
torch_dtype=torch.float16
|
65 |
).to("cuda")
|
66 |
|
|
|
67 |
@spaces.GPU
|
68 |
def blip_caption_image(image, prefix):
|
69 |
inputs = blip_processor(image, prefix, return_tensors="pt").to("cuda", torch.float16)
|
|
|
125 |
return fig
|
126 |
|
127 |
@spaces.GPU
|
128 |
+
def generate_images_plots(prompt, model_name):
|
129 |
+
print(model_name)
|
130 |
+
# Update the pipeline to use the selected model
|
131 |
+
global pipeline_text2image
|
132 |
+
pipeline_text2image = DiffusionPipeline.from_pretrained(
|
133 |
+
model_name
|
134 |
+
)
|
135 |
+
pipeline_text2image = pipeline_text2image.to("cuda")
|
136 |
+
|
137 |
foldername = "temp"
|
138 |
# Generate 10 images
|
139 |
images = [getimgen(prompt) for _ in range(10)]
|
|
|
160 |
|
161 |
return images, skintoneplot(skintones), genderplot(genders)
|
162 |
|
163 |
+
with gr.Blocks(title = "Skin Tone and Gender bias in Text to Image Models") as demo:
|
164 |
|
165 |
+
gr.Markdown("# Skin Tone and Gender bias in Text to Image Models")
|
|
|
|
|
166 |
|
167 |
+
model_dropdown = gr.Dropdown(label="Choose a model", choices=model_names, value=default_model)
|
168 |
prompt = gr.Textbox(label="Enter the Prompt")
|
169 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery",
|
170 |
columns=[5], rows=[2], object_fit="contain", height="auto")
|
|
|
173 |
skinplot = gr.Plot(label="Skin Tone")
|
174 |
genplot = gr.Plot(label="Gender")
|
175 |
|
176 |
+
btn.click(generate_images_plots, inputs=[prompt, model_dropdown], outputs=[gallery, skinplot, genplot])
|
177 |
|
178 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
test.ipynb
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from diffusers import AutoPipelineForText2Image\n",
|
10 |
+
"import torch"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 7,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [
|
18 |
+
{
|
19 |
+
"name": "stderr",
|
20 |
+
"output_type": "stream",
|
21 |
+
"text": [
|
22 |
+
"vae/diffusion_pytorch_model.safetensors not found\n"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"data": {
|
27 |
+
"application/vnd.jupyter.widget-view+json": {
|
28 |
+
"model_id": "1822a5456c3244b6b5831817d6d0ebbc",
|
29 |
+
"version_major": 2,
|
30 |
+
"version_minor": 0
|
31 |
+
},
|
32 |
+
"text/plain": [
|
33 |
+
"Fetching 15 files: 0%| | 0/15 [00:00<?, ?it/s]"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"metadata": {},
|
37 |
+
"output_type": "display_data"
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"data": {
|
41 |
+
"application/vnd.jupyter.widget-view+json": {
|
42 |
+
"model_id": "6232a45e054e4439a822345b4744b0b8",
|
43 |
+
"version_major": 2,
|
44 |
+
"version_minor": 0
|
45 |
+
},
|
46 |
+
"text/plain": [
|
47 |
+
"tokenizer/special_tokens_map.json: 0%| | 0.00/472 [00:00<?, ?B/s]"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"metadata": {},
|
51 |
+
"output_type": "display_data"
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"data": {
|
55 |
+
"application/vnd.jupyter.widget-view+json": {
|
56 |
+
"model_id": "da77db92e94e482b83b679b698630be0",
|
57 |
+
"version_major": 2,
|
58 |
+
"version_minor": 0
|
59 |
+
},
|
60 |
+
"text/plain": [
|
61 |
+
"(…)ature_extractor/preprocessor_config.json: 0%| | 0.00/342 [00:00<?, ?B/s]"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
"metadata": {},
|
65 |
+
"output_type": "display_data"
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"data": {
|
69 |
+
"application/vnd.jupyter.widget-view+json": {
|
70 |
+
"model_id": "1f73d5e96b8b4c218433d8c9ea66b4b1",
|
71 |
+
"version_major": 2,
|
72 |
+
"version_minor": 0
|
73 |
+
},
|
74 |
+
"text/plain": [
|
75 |
+
"safety_checker/config.json: 0%| | 0.00/4.80k [00:00<?, ?B/s]"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
"metadata": {},
|
79 |
+
"output_type": "display_data"
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"data": {
|
83 |
+
"application/vnd.jupyter.widget-view+json": {
|
84 |
+
"model_id": "4eb1d6d2c98c46e6940129236928b9d8",
|
85 |
+
"version_major": 2,
|
86 |
+
"version_minor": 0
|
87 |
+
},
|
88 |
+
"text/plain": [
|
89 |
+
"text_encoder/config.json: 0%| | 0.00/589 [00:00<?, ?B/s]"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
"metadata": {},
|
93 |
+
"output_type": "display_data"
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"data": {
|
97 |
+
"application/vnd.jupyter.widget-view+json": {
|
98 |
+
"model_id": "8455fd4bd49e462e94a15614968edeeb",
|
99 |
+
"version_major": 2,
|
100 |
+
"version_minor": 0
|
101 |
+
},
|
102 |
+
"text/plain": [
|
103 |
+
"tokenizer/merges.txt: 0%| | 0.00/525k [00:00<?, ?B/s]"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "display_data"
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"data": {
|
111 |
+
"application/vnd.jupyter.widget-view+json": {
|
112 |
+
"model_id": "85c9b8ddc3084051b9de01a1cc4b346f",
|
113 |
+
"version_major": 2,
|
114 |
+
"version_minor": 0
|
115 |
+
},
|
116 |
+
"text/plain": [
|
117 |
+
"scheduler/scheduler_config.json: 0%| | 0.00/284 [00:00<?, ?B/s]"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
"metadata": {},
|
121 |
+
"output_type": "display_data"
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"data": {
|
125 |
+
"application/vnd.jupyter.widget-view+json": {
|
126 |
+
"model_id": "f01d373de73e49198ed9a509ff884d83",
|
127 |
+
"version_major": 2,
|
128 |
+
"version_minor": 0
|
129 |
+
},
|
130 |
+
"text/plain": [
|
131 |
+
"unet/config.json: 0%| | 0.00/789 [00:00<?, ?B/s]"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
"metadata": {},
|
135 |
+
"output_type": "display_data"
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"data": {
|
139 |
+
"application/vnd.jupyter.widget-view+json": {
|
140 |
+
"model_id": "2dad6d09e0b944cb91e5e68d374ad283",
|
141 |
+
"version_major": 2,
|
142 |
+
"version_minor": 0
|
143 |
+
},
|
144 |
+
"text/plain": [
|
145 |
+
"tokenizer/vocab.json: 0%| | 0.00/1.06M [00:00<?, ?B/s]"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
"metadata": {},
|
149 |
+
"output_type": "display_data"
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"data": {
|
153 |
+
"application/vnd.jupyter.widget-view+json": {
|
154 |
+
"model_id": "69c41904a7dd439296a3a56c0a37acda",
|
155 |
+
"version_major": 2,
|
156 |
+
"version_minor": 0
|
157 |
+
},
|
158 |
+
"text/plain": [
|
159 |
+
"vae/config.json: 0%| | 0.00/592 [00:00<?, ?B/s]"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
"metadata": {},
|
163 |
+
"output_type": "display_data"
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"data": {
|
167 |
+
"application/vnd.jupyter.widget-view+json": {
|
168 |
+
"model_id": "a3c8d76377f9445e81d73336d2b70535",
|
169 |
+
"version_major": 2,
|
170 |
+
"version_minor": 0
|
171 |
+
},
|
172 |
+
"text/plain": [
|
173 |
+
"safety_checker/pytorch_model.bin: 0%| | 0.00/608M [00:00<?, ?B/s]"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
"metadata": {},
|
177 |
+
"output_type": "display_data"
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"data": {
|
181 |
+
"application/vnd.jupyter.widget-view+json": {
|
182 |
+
"model_id": "67a6fd052c734c69950ce38c7503821a",
|
183 |
+
"version_major": 2,
|
184 |
+
"version_minor": 0
|
185 |
+
},
|
186 |
+
"text/plain": [
|
187 |
+
"text_encoder/pytorch_model.bin: 0%| | 0.00/246M [00:00<?, ?B/s]"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
"metadata": {},
|
191 |
+
"output_type": "display_data"
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"data": {
|
195 |
+
"application/vnd.jupyter.widget-view+json": {
|
196 |
+
"model_id": "e7de26e3010f484bb698f62dfae0a255",
|
197 |
+
"version_major": 2,
|
198 |
+
"version_minor": 0
|
199 |
+
},
|
200 |
+
"text/plain": [
|
201 |
+
"tokenizer/tokenizer_config.json: 0%| | 0.00/805 [00:00<?, ?B/s]"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
"metadata": {},
|
205 |
+
"output_type": "display_data"
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"data": {
|
209 |
+
"application/vnd.jupyter.widget-view+json": {
|
210 |
+
"model_id": "d4080d04c64642a09514fd7570ba0cde",
|
211 |
+
"version_major": 2,
|
212 |
+
"version_minor": 0
|
213 |
+
},
|
214 |
+
"text/plain": [
|
215 |
+
"unet/diffusion_pytorch_model.bin: 0%| | 0.00/1.72G [00:00<?, ?B/s]"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
"metadata": {},
|
219 |
+
"output_type": "display_data"
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"data": {
|
223 |
+
"application/vnd.jupyter.widget-view+json": {
|
224 |
+
"model_id": "402fd6d5c4054bdfae85f085c538ebac",
|
225 |
+
"version_major": 2,
|
226 |
+
"version_minor": 0
|
227 |
+
},
|
228 |
+
"text/plain": [
|
229 |
+
"vae/diffusion_pytorch_model.bin: 0%| | 0.00/167M [00:00<?, ?B/s]"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
"metadata": {},
|
233 |
+
"output_type": "display_data"
|
234 |
+
}
|
235 |
+
],
|
236 |
+
"source": [
|
237 |
+
"# model = \"CompVis/ldm-text2im-large-256\"\n",
|
238 |
+
"model = \"sd-dreambooth-library/colorful-ball\"\n",
|
239 |
+
"# model = \"stabilityai/sdxl-turbo\"\n",
|
240 |
+
"\n",
|
241 |
+
"pipeline_text2image = AutoPipelineForText2Image.from_pretrained(\n",
|
242 |
+
" model,\n",
|
243 |
+
" torch_dtype=torch.float16,\n",
|
244 |
+
")\n",
|
245 |
+
"pipeline_text2image = pipeline_text2image.to(\"cuda\")"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": null,
|
251 |
+
"metadata": {},
|
252 |
+
"outputs": [],
|
253 |
+
"source": []
|
254 |
+
}
|
255 |
+
],
|
256 |
+
"metadata": {
|
257 |
+
"kernelspec": {
|
258 |
+
"display_name": "gradio",
|
259 |
+
"language": "python",
|
260 |
+
"name": "python3"
|
261 |
+
},
|
262 |
+
"language_info": {
|
263 |
+
"codemirror_mode": {
|
264 |
+
"name": "ipython",
|
265 |
+
"version": 3
|
266 |
+
},
|
267 |
+
"file_extension": ".py",
|
268 |
+
"mimetype": "text/x-python",
|
269 |
+
"name": "python",
|
270 |
+
"nbconvert_exporter": "python",
|
271 |
+
"pygments_lexer": "ipython3",
|
272 |
+
"version": "3.12.2"
|
273 |
+
}
|
274 |
+
},
|
275 |
+
"nbformat": 4,
|
276 |
+
"nbformat_minor": 2
|
277 |
+
}
|