File size: 10,094 Bytes
63858e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
<!DOCTYPE html>
<html lang="en">

<head>
    <!-- Global site tag (gtag.js) - Google Analytics -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=UA-149275901-1"></script>
    <script>
        window.dataLayer = window.dataLayer || [];
        function gtag() { dataLayer.push(arguments); }
        gtag('js', new Date());

        gtag('config', 'UA-149275901-2');
    </script>
    <meta charset="UTF-8">
    <title>exBERT</title>
    <!--<link rel="stylesheet" href="bootstrap.min.css">-->
    <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet"
        integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous">
    <link href="https://maxcdn.bootstrapcdn.com/bootswatch/3.3.6/cosmo/bootstrap.min.css" rel="stylesheet"
        integrity="sha384-OiWEn8WwtH+084y4yW2YhhH6z/qTSecHZuk/eiWtnvLtU+Z8lpDsmhOKkex6YARr" crossorigin="anonymous">
    <!--    <link rel="stylesheet" type="text/css" href="css/index.scss">-->
    <link href="https://fonts.googleapis.com/css?family=IBM+Plex+Sans:300,400&display=swap" rel="stylesheet">


    <link rel="shortcut icon" href="./img/exBERT_favicon.png" type="image/png">
    <style>
        body {
            font-family: 'IBM Plex Sans', sans-serif;

        }

        h1,
        h2,
        h3 {
            font-family: inherit;
        }

        h3 {
            font-weight: normal;
            color: white;
        }

        a {
            color: black;
        }

        a:hover {
            color: black;
            font-weight: 500;
        }
    </style>
    <meta name="title" content="exBERT" />
    <meta name="description" content="A visual exploration of BERT's latent space" />
    <link rel="image_src" href="http://lstm.seas.harvard.edu/small_teaser.png" />
</head>

<body>
    <div class="container">
        <div class="page-header">
            <h1>
                <img src="./img/exBERT.png" height="50" />
                - A Visual Analysis of BERT
            </h1>
            <p class="lead">
                <a target="_blank" href="">Benjamin Hoover</a>,
                <a target="_blank" href="http://hendrik.strobelt.com">Hendrik Strobelt</a>,
                <a target="_blank" href="http://scholar.harvard.edu/gehrmann/home">Sebastian Gehrmann</a>
            </p>
        </div>

        <p>
            Large language models can produce powerful contextual representations that lead to improvements across many
            NLP tasks.
            Since these models are typically guided by a sequence of learned self attention mechanisms and may comprise
            undesired inductive biases, it is paramount to be able to explore what the attention has learned.
            While static analyses of these models lead to targeted insights, interactive tools are more dynamic and can
            help humans better gain an intuition for the model-internal reasoning process.
        </p>

        <p>
            We present <b>exBERT</b> , an interactive tool named after the popular BERT language model, that provides
            insights into the meaning of the contextual representations by matching a human-specified input to similar
            contexts in a large annotated dataset.
            By aggregating the annotations of the matching similar contexts, <b>exBERT</b> helps intuitively explain
            what each attention-head has learned.
        </p>

        <p> Large language models can produce powerful contextual representations that lead to improvements across many
            NLP tasks. Though these models can comprise undesired inductive biases, it is challenging to identify what
            information they encode in their learned representations. </p>

        <p> Since the model-internal reasoning process is often guided by a sequence of learned self-attention
            mechanisms, it is paramount to be able to explore what the attention has learned. While static analyses for
            this can lead to targeted insights, interactive tools can be more dynamic and help humans gain an intuition
            for the model-internal reasoning process. We present exBERT, a tool that helps to gain insights into the
            meaning of the contextual representations. exBERT matches a human-specified input to similar contexts in a
            large annotated dataset. By aggregating these annotations across all similar contexts, exBERT can help to
            explain what each attention-head has learned. </p>

        <p> Thanks to
            <a target="_blank" href="https://www.parc.com/about-parc/our-people/jesse-vig/">Jesse Vig</a>
            for feedback. Please let us know what you think by commenting below! </p>

        <div style="height: 20px"></div>


        <div class="row">
            <div class="col-md-4">
                <div class="text-center" style="background-color: rgb(81,116,144);">
                    <a href="exBERT.html">
                        <h3><i class="fa fa-rocket" aria-hidden="true" style="font-size: 80%; "></i> Live Server </h3>
                    </a>
                </div>


            </div>
            <div class="col-md-4">
                <div class="text-center" style="background-color: rgb(203,122,130);padding: inherit">
                    <a href="https://github.com/bhoov/transformer-viz">
                        <h3><i class="fa fa-github" aria-hidden="true" style="font-size: 80%;"></i> Source Code </h3>
                    </a>
                </div>
            </div>
            <div class="col-md-4">
                <div class="text-center" style="background-color: rgb(152,152,152);padding: inherit">
                    <a href="">
                        <h3><i class="fa fa-book" aria-hidden="true" style="font-size: 80%;"></i> Pre-Publication </h3>
                    </a>
                </div>
            </div>
        </div>


        <div class="row">
            <div class="col-md-8 col-md-offset-2">
                <div class='col-sm'>
                    <img id='tool-screenshot' src="./img/exBERT_overview.png" alt="Tool screenshot" height="600px">
                </div>
            </div>
        </div>

        <hr>

        <div class="row">
            <div class="col-md-4">
                <div class="text-center" style="background-color: rgb(81,116,144);">
                    <a href="exBERT.html">
                        <h3><i class="fa fa-rocket" aria-hidden="true" style="font-size: 80%; "></i> Live Server </h3>
                    </a>
                </div>


            </div>
            <div class="col-md-4">
                <div class="text-center" style="background-color: rgb(203,122,130);padding: inherit">
                    <a href="https://github.com/bhoov/transformer-viz">
                        <h3><i class="fa fa-github" aria-hidden="true" style="font-size: 80%;"></i> Source Code </h3>
                    </a>
                </div>
            </div>
            <div class="col-md-4">
                <div class="text-center" style="background-color: rgb(152,152,152);padding: inherit">
                    <a href="">
                        <h3><i class="fa fa-book" aria-hidden="true" style="font-size: 80%;"></i> Pre-Publication </h3>
                    </a>
                </div>
            </div>
        </div>


        <div class="vspace-40"></div>

        <div class="row">
            <div class="col-12 text-center gray-1">
                <p></p>
                <p>We care about your privacy, but know that your activity on the site may be monitored. For more
                    information, check out the links below.</p>
            </div>
        </div>

        <div class="row">
            <div class="col-lg-12 text-center gray-1">
                <a target="_blank" href="http://www.ibm.com/legal/us/en/?lnk=flg-tous-usen" class="gray-1">Terms of
                    Use</a> |
                <a target="_blank" href="http://www.ibm.com/privacy/us/en/?lnk=flg-priv-usen" class="gray-1">Privacy</a>
            </div>
        </div>


        <hr>

        <div class="row justify-content-md-center">
            <!-- <div class="col-xs-offset-2 col-lg-4 text-center" style="font-size: 16pt;"> -->
            <div class="col-lg-6 text-center" style="font-size: 16pt;">
                <span style="white-space: nowrap;"><b>IBM</b> Research, Cambridge </span><br>
                <b>MIT-IBM</b> Watson <b>AI Lab</b>
            </div>
            <div class="col-xs-3 text-center">
                <a target="_blank" href="http://nlp.seas.harvard.edu/"><img class="img-responsive"
                        src="./img/harvardnlp_logo.png"></a>
            </div>
        </div>




        <!-- DISQUS THREAD -->
        <div id="disqus_thread"></div>
        <script>

            /**
            *  RECOMMENDED CONFIGURATION VARIABLES: EDIT AND UNCOMMENT THE SECTION BELOW TO INSERT DYNAMIC VALUES FROM YOUR PLATFORM OR CMS.
            *  LEARN WHY DEFINING THESE VARIABLES IS IMPORTANT: https://disqus.com/admin/universalcode/#configuration-variables*/
            /*
            var disqus_config = function () {
            this.page.url = PAGE_URL;  // Replace PAGE_URL with your page's canonical URL variable
            this.page.identifier = PAGE_IDENTIFIER; // Replace PAGE_IDENTIFIER with your page's unique identifier variable
            };
            */
            (function () { // DON'T EDIT BELOW THIS LINE
                var d = document, s = d.createElement('script');
                s.src = 'https://exbert.disqus.com/embed.js';
                s.setAttribute('data-timestamp', +new Date());
                (d.head || d.body).appendChild(s);
            })();
        </script>
        <noscript>Please enable JavaScript to view the <a href="https://disqus.com/?ref_noscript">comments powered by
                Disqus.</a></noscript>

    </div>


    <!-- <script id="dsq-count-scr" src="//exbert.disqus.com/count.js" async></script> -->
</body>

</html>