Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Simplify model_api in server
Browse files- environment.yml +5 -12
- server/model_api.py +161 -0
- server/setup.py +2 -2
- server/transformer_formatter.py +19 -109
- server/utils/gen_utils.py +0 -7
- server/utils/token_processing.py +1 -176
environment.yml
CHANGED
@@ -5,21 +5,14 @@ channels:
|
|
5 |
- defaults
|
6 |
- anaconda
|
7 |
dependencies:
|
|
|
8 |
- python=3.7
|
9 |
- connexion=1.5.3
|
10 |
-
- h5py
|
11 |
-
- spacy
|
12 |
- boto3
|
13 |
- regex
|
14 |
- flask-cors
|
15 |
-
- faiss-cpu
|
16 |
- jinja2=2.10
|
17 |
-
- numpy
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
- pip=19.0.3
|
22 |
-
- pytorch=1.0.1
|
23 |
-
- sacremoses
|
24 |
-
- pip:
|
25 |
-
- sentencepiece
|
|
|
5 |
- defaults
|
6 |
- anaconda
|
7 |
dependencies:
|
8 |
+
- pip>=19.0.3
|
9 |
- python=3.7
|
10 |
- connexion=1.5.3
|
|
|
|
|
11 |
- boto3
|
12 |
- regex
|
13 |
- flask-cors
|
|
|
14 |
- jinja2=2.10
|
15 |
+
- numpy
|
16 |
+
- pytorch
|
17 |
+
- torchvision
|
18 |
+
- transformers
|
|
|
|
|
|
|
|
|
|
server/model_api.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelWithLMHead, AutoModel
|
5 |
+
|
6 |
+
from transformer_formatter import TransformerOutputFormatter
|
7 |
+
from utils.f import delegates, pick, memoize
|
8 |
+
|
9 |
+
def get_model_tok(mname):
|
10 |
+
conf = AutoConfig.from_pretrained(mname, output_attentions=True, output_past=False)
|
11 |
+
tok = AutoTokenizer.from_pretrained(mname, config=conf)
|
12 |
+
model = AutoModelWithLMHead.from_pretrained(mname, config=conf)
|
13 |
+
return model, tok
|
14 |
+
|
15 |
+
class ModelDetails:
|
16 |
+
"""Wraps a transformer model and tokenizer to prepare inputs to the frontend visualization"""
|
17 |
+
def __init__(self, mname):
|
18 |
+
self.mname = mname
|
19 |
+
self.model, self.tok = get_model_tok(self.mname)
|
20 |
+
self.model.eval()
|
21 |
+
self.config = self.model.config
|
22 |
+
|
23 |
+
def from_sentence(self, sentence: str) -> TransformerOutputFormatter:
|
24 |
+
"""Get attentions and word probabilities from a sentence. Special tokens are automatically added if a sentence is passed.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
sentence: The input sentence to tokenize and analyze.
|
28 |
+
"""
|
29 |
+
tokens = self.tok.tokenize(sentence)
|
30 |
+
|
31 |
+
return self.from_tokens(tokens, sentence, add_special_tokens=True)
|
32 |
+
|
33 |
+
def from_tokens(
|
34 |
+
self, tokens: List[str], orig_sentence:str, add_special_tokens:bool=False, mask_attentions:bool=False, topk:int=5
|
35 |
+
) -> TransformerOutputFormatter:
|
36 |
+
"""Get formatted attention and predictions from a list of tokens.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
tokens: Tokens to analyze
|
40 |
+
orig_sentence: The sentence the tokens came from (needed to help organize the output)
|
41 |
+
add_special_tokens: Whether to add special tokens like CLS / <|endoftext|> to the tokens.
|
42 |
+
If False, assume the tokens already have the special tokens
|
43 |
+
mask_attentions: If True, do not pay attention to attention patterns to special tokens through the model.
|
44 |
+
topk: How many top predictions to report
|
45 |
+
"""
|
46 |
+
ids = self.tok.convert_tokens_to_ids(tokens)
|
47 |
+
|
48 |
+
# For GPT2, add the beginning of sentence token to the input. Note that this will work on all models but XLM
|
49 |
+
bost = self.tok.bos_token_id
|
50 |
+
clst = self.tok.cls_token_id
|
51 |
+
if (bost is not None) and (bost != clst) and add_special_tokens:
|
52 |
+
ids.insert(0, bost)
|
53 |
+
|
54 |
+
inputs = self.tok.prepare_for_model(ids, add_special_tokens=add_special_tokens, return_tensors="pt")
|
55 |
+
parsed_input = self.parse_inputs(inputs, mask_attentions=mask_attentions)
|
56 |
+
output = self.model(parsed_input['input_ids'], attention_mask=parsed_input['attention_mask'])
|
57 |
+
|
58 |
+
logits, atts = self.choose_logits_att(output)
|
59 |
+
words, probs = self.logits2words(logits, topk)
|
60 |
+
tokens = self.view_ids(inputs["input_ids"])
|
61 |
+
|
62 |
+
formatted_output = TransformerOutputFormatter(
|
63 |
+
orig_sentence,
|
64 |
+
tokens,
|
65 |
+
inputs["special_tokens_mask"],
|
66 |
+
atts,
|
67 |
+
words,
|
68 |
+
probs.tolist(),
|
69 |
+
self.config
|
70 |
+
)
|
71 |
+
|
72 |
+
return formatted_output
|
73 |
+
|
74 |
+
def choose_logits_att(self, out:Tuple) -> Tuple:
|
75 |
+
"""Select from the model's output the logits and the attentions, switching on model name
|
76 |
+
|
77 |
+
Args:
|
78 |
+
out: Output from the model's forward pass
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
(logits: tensor((bs, N)), attentions: Tuple[tensor(())])
|
82 |
+
"""
|
83 |
+
if 't5' in self.mname:
|
84 |
+
logits, _, atts = out
|
85 |
+
else:
|
86 |
+
logits, atts = out
|
87 |
+
|
88 |
+
print("Logits: ", logits)
|
89 |
+
print("atts: ", atts[0].shape)
|
90 |
+
return logits, atts
|
91 |
+
|
92 |
+
def logits2words(self, logits, topk):
|
93 |
+
"""Convert logit probabilities into words from the tokenizer's vocabulary.
|
94 |
+
|
95 |
+
"""
|
96 |
+
probs, idxs = torch.topk(torch.softmax(logits.squeeze(0), 1), topk)
|
97 |
+
words = [self.tok.convert_ids_to_tokens(i) for i in idxs]
|
98 |
+
return words, probs
|
99 |
+
|
100 |
+
def view_ids(self, ids: Union[List[int], torch.Tensor]) -> List[str]:
|
101 |
+
"""View what the tokenizer thinks certain ids are for a single input"""
|
102 |
+
if type(ids) == torch.Tensor:
|
103 |
+
# Remove batch dimension
|
104 |
+
ids = ids.squeeze(0).tolist()
|
105 |
+
|
106 |
+
out = self.tok.convert_ids_to_tokens(ids)
|
107 |
+
return out
|
108 |
+
|
109 |
+
def parse_inputs(self, inputs, mask_attentions=False):
|
110 |
+
"""Parse the output from `tokenizer.prepare_for_model` to the desired attention mask from special tokens
|
111 |
+
|
112 |
+
Args:
|
113 |
+
- inputs: The output of `tokenizer.prepare_for_model`.
|
114 |
+
A dict with keys: {'special_token_mask', 'token_type_ids', 'input_ids'}
|
115 |
+
- mask_attentions: Flag indicating whether to mask the attentions or not
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
Dict with keys: {'input_ids', 'token_type_ids', 'attention_mask', 'special_tokens_mask'}
|
119 |
+
|
120 |
+
Usage:
|
121 |
+
|
122 |
+
```
|
123 |
+
s = "test sentence"
|
124 |
+
|
125 |
+
# from raw sentence to tokens
|
126 |
+
tokens = tokenizer.tokenize(s)
|
127 |
+
|
128 |
+
# From tokens to ids
|
129 |
+
ids = tokenizer.convert_tokens_to_ids(tokens)
|
130 |
+
|
131 |
+
# From ids to input
|
132 |
+
inputs = tokenizer.prepare_for_model(ids, return_tensors='pt')
|
133 |
+
|
134 |
+
# Parse the input. Optionally mask the special tokens from the analysis.
|
135 |
+
parsed_input = parse_inputs(inputs)
|
136 |
+
|
137 |
+
# Run the model, pick from this output whatever inputs you want
|
138 |
+
from utils.f import pick
|
139 |
+
out = model(**pick(['input_ids'], parse_inputs(inputs)))
|
140 |
+
```
|
141 |
+
"""
|
142 |
+
|
143 |
+
out = inputs.copy()
|
144 |
+
|
145 |
+
# DEFINE SPECIAL TOKENS MASK
|
146 |
+
if "special_tokens_mask" not in inputs.keys():
|
147 |
+
special_tokens = set([self.tok.unk_token_id, self.tok.cls_token_id, self.tok.sep_token_id, self.tok.bos_token_id, self.tok.eos_token_id, self.tok.pad_token_id])
|
148 |
+
in_ids = inputs['input_ids'][0]
|
149 |
+
special_tok_mask = [1 if int(i) in special_tokens else 0 for i in in_ids]
|
150 |
+
inputs['special_tokens_mask'] = special_tok_mask
|
151 |
+
|
152 |
+
if mask_attentions:
|
153 |
+
out["attention_mask"] = torch.tensor(
|
154 |
+
[int(not i) for i in inputs.get("special_tokens_mask")]
|
155 |
+
).unsqueeze(0)
|
156 |
+
else:
|
157 |
+
out["attention_mask"] = torch.tensor(
|
158 |
+
[1 for i in inputs.get("special_tokens_mask")]
|
159 |
+
).unsqueeze(0)
|
160 |
+
|
161 |
+
return out
|
server/setup.py
CHANGED
@@ -3,8 +3,8 @@ from setuptools import setup, find_packages
|
|
3 |
requires = [] # Let conda handle requires
|
4 |
|
5 |
setup(
|
6 |
-
name="
|
7 |
-
description="
|
8 |
packages=find_packages(),
|
9 |
author="IBM Research AI",
|
10 |
include_package_data=True,
|
|
|
3 |
requires = [] # Let conda handle requires
|
4 |
|
5 |
setup(
|
6 |
+
name="exformer",
|
7 |
+
description="Just the attention vis of exbert",
|
8 |
packages=find_packages(),
|
9 |
author="IBM Research AI",
|
10 |
include_package_data=True,
|
server/transformer_formatter.py
CHANGED
@@ -4,7 +4,6 @@ import numpy as np
|
|
4 |
import torch
|
5 |
import json
|
6 |
|
7 |
-
from spacyface.simple_spacy_token import SimpleSpacyToken
|
8 |
from utils.token_processing import fix_byte_spaces
|
9 |
from utils.gen_utils import map_nlist
|
10 |
|
@@ -14,8 +13,8 @@ def round_return_value(attentions, ndigits=5):
|
|
14 |
|
15 |
attentions: {
|
16 |
'aa': {
|
17 |
-
left
|
18 |
-
right
|
19 |
att
|
20 |
}
|
21 |
}
|
@@ -25,19 +24,6 @@ def round_return_value(attentions, ndigits=5):
|
|
25 |
nested_rounder = partial(map_nlist, rounder)
|
26 |
new_out = attentions # Modify values to save memory
|
27 |
new_out["aa"]["att"] = nested_rounder(attentions["aa"]["att"])
|
28 |
-
new_out["aa"]["left"]["embeddings"] = nested_rounder(
|
29 |
-
attentions["aa"]["left"]["embeddings"]
|
30 |
-
)
|
31 |
-
new_out["aa"]["left"]["contexts"] = nested_rounder(
|
32 |
-
attentions["aa"]["left"]["contexts"]
|
33 |
-
)
|
34 |
-
|
35 |
-
new_out["aa"]["right"]["embeddings"] = nested_rounder(
|
36 |
-
attentions["aa"]["right"]["embeddings"]
|
37 |
-
)
|
38 |
-
new_out["aa"]["right"]["contexts"] = nested_rounder(
|
39 |
-
attentions["aa"]["right"]["contexts"]
|
40 |
-
)
|
41 |
|
42 |
return new_out
|
43 |
|
@@ -60,71 +46,40 @@ class TransformerOutputFormatter:
|
|
60 |
def __init__(
|
61 |
self,
|
62 |
sentence: str,
|
63 |
-
tokens: List[
|
64 |
special_tokens_mask: List[int],
|
65 |
att: Tuple[torch.Tensor],
|
66 |
-
embeddings: Tuple[torch.Tensor],
|
67 |
-
contexts: Tuple[torch.Tensor],
|
68 |
topk_words: List[List[str]],
|
69 |
-
topk_probs: List[List[float]]
|
|
|
70 |
):
|
71 |
assert len(tokens) > 0, "Cannot have an empty token output!"
|
72 |
|
73 |
-
modified_embeddings = flatten_batch(embeddings)
|
74 |
modified_att = flatten_batch(att)
|
75 |
-
modified_contexts = flatten_batch(contexts)
|
76 |
|
77 |
self.sentence = sentence
|
78 |
self.tokens = tokens
|
79 |
self.special_tokens_mask = special_tokens_mask
|
80 |
-
self.embeddings = modified_embeddings
|
81 |
self.attentions = modified_att
|
82 |
-
self.raw_contexts = modified_contexts
|
83 |
self.topk_words = topk_words
|
84 |
self.topk_probs = topk_probs
|
|
|
85 |
|
86 |
-
self.
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
return squeeze_contexts(self.raw_contexts)
|
93 |
-
|
94 |
-
@property
|
95 |
-
def normed_embeddings(self):
|
96 |
-
ens = tuple([torch.norm(e, dim=-1) for e in self.embeddings])
|
97 |
-
normed_es = tuple([e / en.unsqueeze(-1) for e, en in zip(self.embeddings, ens)])
|
98 |
-
return normed_es
|
99 |
-
|
100 |
-
@property
|
101 |
-
def normed_contexts(self):
|
102 |
-
"""Normalize each by head"""
|
103 |
-
cs = self.raw_contexts
|
104 |
-
cns = tuple([torch.norm(c, dim=-1) for c in cs])
|
105 |
-
normed_cs = tuple([c / cn.unsqueeze(-1) for c, cn in zip(cs, cns)])
|
106 |
-
squeezed_normed_cs = squeeze_contexts(normed_cs)
|
107 |
-
return squeezed_normed_cs
|
108 |
|
109 |
def to_json(self, layer:int, ndigits=5):
|
110 |
"""The original API expects the following response:
|
111 |
|
112 |
aa: {
|
113 |
att: number[][][]
|
114 |
-
left:
|
115 |
-
right:
|
116 |
}
|
117 |
-
|
118 |
-
FullSingleTokenInfo:
|
119 |
-
{
|
120 |
-
text: string
|
121 |
-
embeddings: number[]
|
122 |
-
contexts: number[]
|
123 |
-
bpe_token: string
|
124 |
-
bpe_pos: string
|
125 |
-
bpe_dep: string
|
126 |
-
bpe_is_ent: boolean
|
127 |
-
}
|
128 |
"""
|
129 |
# Convert the embeddings, attentions, and contexts into list. Perform rounding
|
130 |
|
@@ -133,25 +88,16 @@ class TransformerOutputFormatter:
|
|
133 |
|
134 |
def tolist(tens): return [t.tolist() for t in tens]
|
135 |
|
136 |
-
def to_resp(tok:
|
137 |
return {
|
138 |
-
"text": tok
|
139 |
-
"bpe_token": tok.token,
|
140 |
-
"bpe_pos": tok.pos,
|
141 |
-
"bpe_dep": tok.dep,
|
142 |
-
"bpe_is_ent": tok.is_ent,
|
143 |
-
"embeddings": nested_rounder(embeddings),
|
144 |
-
"contexts": nested_rounder(contexts),
|
145 |
"topk_words": topk_words,
|
146 |
"topk_probs": nested_rounder(topk_probs)
|
147 |
}
|
148 |
|
149 |
-
side_info = [to_resp(t,
|
150 |
-
|
151 |
-
|
152 |
-
tolist(self.contexts[layer]),
|
153 |
-
self.topk_words,
|
154 |
-
self.topk_probs)]
|
155 |
|
156 |
out = {"aa": {
|
157 |
"att": nested_rounder(tolist(self.attentions[layer])),
|
@@ -164,42 +110,6 @@ class TransformerOutputFormatter:
|
|
164 |
def display_tokens(self, tokens):
|
165 |
return fix_byte_spaces(tokens)
|
166 |
|
167 |
-
def to_hdf5_meta(self):
|
168 |
-
"""Output metadata information to store as hdf5 metadata for a group"""
|
169 |
-
token_dtype = self.tokens[0].hdf5_token_dtype
|
170 |
-
out = {k: np.array([t[k] for t in self.tokens], dtype=np.dtype(dtype)) for k, dtype in token_dtype}
|
171 |
-
out['sentence'] = self.sentence
|
172 |
-
return out
|
173 |
-
|
174 |
-
def to_hdf5_content(self, do_norm=True):
|
175 |
-
"""Return dictionary of {attentions, embeddings, contexts} formatted as array for hdf5 file"""
|
176 |
-
|
177 |
-
def get_embeds(c):
|
178 |
-
if do_norm: return c.normed_embeddings
|
179 |
-
return c.embeddings
|
180 |
-
|
181 |
-
def get_contexts(c):
|
182 |
-
if do_norm: return c.normed_contexts
|
183 |
-
return c.contexts
|
184 |
-
|
185 |
-
embeddings = to_numpy(get_embeds(self))
|
186 |
-
contexts = to_numpy(get_contexts(self))
|
187 |
-
atts = to_numpy(self.attentions)
|
188 |
-
|
189 |
-
return {
|
190 |
-
"embeddings": embeddings,
|
191 |
-
"contexts": contexts,
|
192 |
-
"attentions": atts
|
193 |
-
}
|
194 |
-
|
195 |
-
@property
|
196 |
-
def searchable_embeddings(self):
|
197 |
-
return np.array(list(map(to_searchable, self.embeddings)))
|
198 |
-
|
199 |
-
@property
|
200 |
-
def searchable_contexts(self):
|
201 |
-
return np.array(list(map(to_searchable, self.contexts)))
|
202 |
-
|
203 |
def __repr__(self):
|
204 |
lim = 50
|
205 |
if len(self.sentence) > lim: s = self.sentence[:lim - 3] + "..."
|
|
|
4 |
import torch
|
5 |
import json
|
6 |
|
|
|
7 |
from utils.token_processing import fix_byte_spaces
|
8 |
from utils.gen_utils import map_nlist
|
9 |
|
|
|
13 |
|
14 |
attentions: {
|
15 |
'aa': {
|
16 |
+
left
|
17 |
+
right
|
18 |
att
|
19 |
}
|
20 |
}
|
|
|
24 |
nested_rounder = partial(map_nlist, rounder)
|
25 |
new_out = attentions # Modify values to save memory
|
26 |
new_out["aa"]["att"] = nested_rounder(attentions["aa"]["att"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
return new_out
|
29 |
|
|
|
46 |
def __init__(
|
47 |
self,
|
48 |
sentence: str,
|
49 |
+
tokens: List[str],
|
50 |
special_tokens_mask: List[int],
|
51 |
att: Tuple[torch.Tensor],
|
|
|
|
|
52 |
topk_words: List[List[str]],
|
53 |
+
topk_probs: List[List[float]],
|
54 |
+
model_config
|
55 |
):
|
56 |
assert len(tokens) > 0, "Cannot have an empty token output!"
|
57 |
|
|
|
58 |
modified_att = flatten_batch(att)
|
|
|
59 |
|
60 |
self.sentence = sentence
|
61 |
self.tokens = tokens
|
62 |
self.special_tokens_mask = special_tokens_mask
|
|
|
63 |
self.attentions = modified_att
|
|
|
64 |
self.topk_words = topk_words
|
65 |
self.topk_probs = topk_probs
|
66 |
+
self.model_config = model_config
|
67 |
|
68 |
+
self.n_layer = self.model_config.n_layer
|
69 |
+
self.n_head = self.model_config.n_head
|
70 |
+
self.hidden_dim = self.model_config.n_embd
|
71 |
+
|
72 |
+
self.__len = len(tokens)# Get the number of tokens in the input
|
73 |
+
assert self.__len == self.attentions[0].shape[-1], "Attentions don't represent the passed tokens!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def to_json(self, layer:int, ndigits=5):
|
76 |
"""The original API expects the following response:
|
77 |
|
78 |
aa: {
|
79 |
att: number[][][]
|
80 |
+
left: List[str]
|
81 |
+
right: List[str]
|
82 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
"""
|
84 |
# Convert the embeddings, attentions, and contexts into list. Perform rounding
|
85 |
|
|
|
88 |
|
89 |
def tolist(tens): return [t.tolist() for t in tens]
|
90 |
|
91 |
+
def to_resp(tok: str, topk_words, topk_probs):
|
92 |
return {
|
93 |
+
"text": tok,
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
"topk_words": topk_words,
|
95 |
"topk_probs": nested_rounder(topk_probs)
|
96 |
}
|
97 |
|
98 |
+
side_info = [to_resp(t, w, p) for t,w,p in zip( self.tokens,
|
99 |
+
self.topk_words,
|
100 |
+
self.topk_probs)]
|
|
|
|
|
|
|
101 |
|
102 |
out = {"aa": {
|
103 |
"att": nested_rounder(tolist(self.attentions[layer])),
|
|
|
110 |
def display_tokens(self, tokens):
|
111 |
return fix_byte_spaces(tokens)
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
def __repr__(self):
|
114 |
lim = 50
|
115 |
if len(self.sentence) > lim: s = self.sentence[:lim - 3] + "..."
|
server/utils/gen_utils.py
CHANGED
@@ -1,15 +1,8 @@
|
|
1 |
-
import spacy
|
2 |
from copy import deepcopy
|
3 |
import numpy as np
|
4 |
from functools import partial
|
5 |
from .f import memoize
|
6 |
|
7 |
-
def add_base_exceptions(language_exceptions):
|
8 |
-
merged = {}
|
9 |
-
merged.update(language_exceptions)
|
10 |
-
merged.update(spacy.lang.tokenizer_exceptions.BASE_EXCEPTIONS)
|
11 |
-
return merged
|
12 |
-
|
13 |
def check_key_len(d, length):
|
14 |
for k, v in d.items():
|
15 |
if len(v) != length:
|
|
|
|
|
1 |
from copy import deepcopy
|
2 |
import numpy as np
|
3 |
from functools import partial
|
4 |
from .f import memoize
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def check_key_len(d, length):
|
7 |
for k, v in d.items():
|
8 |
if len(v) != length:
|
server/utils/token_processing.py
CHANGED
@@ -1,191 +1,16 @@
|
|
1 |
-
"""Defines the important metadata to extract for each token.
|
2 |
-
|
3 |
-
If adding more metadata, modify the definitions in `to_spacy_meta` and `meta_to_hdf5`
|
4 |
-
"""
|
5 |
-
import h5py
|
6 |
import numpy as np
|
7 |
-
import spacy
|
8 |
from transformers.tokenization_bert import BertTokenizer
|
9 |
from .f import flatten_, assoc, memoize, GetAttr
|
10 |
|
11 |
from typing import List
|
12 |
|
13 |
def fix_byte_spaces(toks: List[str]) -> List[str]:
|
14 |
-
return [t.replace("\u0120", " ") for t in toks]
|
15 |
-
|
16 |
-
# NOTE: If you want to change anything that is extracted from the SPACY token, change the functions below.
|
17 |
-
# ====================================================================================================
|
18 |
-
def simplify_spacy_token(t):
|
19 |
-
"""Extract important information from spacy token into a simple dictionary"""
|
20 |
-
def check_ent(tok):
|
21 |
-
OUT_OF_ENT = 2
|
22 |
-
NO_ENT_DEFINED = 0
|
23 |
-
return tok.ent_iob != OUT_OF_ENT and tok.ent_iob != NO_ENT_DEFINED
|
24 |
-
|
25 |
-
return {
|
26 |
-
"token": t.text,
|
27 |
-
"pos": t.pos_,
|
28 |
-
"dep": t.dep_,
|
29 |
-
"norm": t.norm_,
|
30 |
-
"tag": t.tag_,
|
31 |
-
"lemma": t.lemma_,
|
32 |
-
"head": t.head,
|
33 |
-
"is_ent": check_ent(t),
|
34 |
-
}
|
35 |
-
|
36 |
-
def null_token_filler(token_text):
|
37 |
-
return {
|
38 |
-
"token": token_text,
|
39 |
-
"pos": None,
|
40 |
-
"dep": None,
|
41 |
-
"norm": None,
|
42 |
-
"tag": None,
|
43 |
-
"lemma": None,
|
44 |
-
"head": None,
|
45 |
-
"is_ent": None,
|
46 |
-
}
|
47 |
-
|
48 |
-
token_dtype = [
|
49 |
-
("token", h5py.special_dtype(vlen=str)),
|
50 |
-
("pos", h5py.special_dtype(vlen=str)),
|
51 |
-
("dep", h5py.special_dtype(vlen=str)),
|
52 |
-
("norm", h5py.special_dtype(vlen=str)),
|
53 |
-
("tag", h5py.special_dtype(vlen=str)),
|
54 |
-
("lemma", h5py.special_dtype(vlen=str)),
|
55 |
-
("head", h5py.special_dtype(vlen=str)),
|
56 |
-
("is_ent", np.bool_),
|
57 |
-
]
|
58 |
-
# ====================================================================================================
|
59 |
|
60 |
@memoize
|
61 |
def get_bpe(bpe_pretrained_name_or_path):
|
62 |
return BertTokenizer.from_pretrained(bpe_pretrained_name_or_path)
|
63 |
|
64 |
-
@memoize
|
65 |
-
def get_spacy(spacy_name):
|
66 |
-
return spacy.load(spacy_name)
|
67 |
-
|
68 |
-
class TokenAligner:
|
69 |
-
def __init__(
|
70 |
-
self,
|
71 |
-
bpe_pretrained_name_or_path="bert-base-uncased",
|
72 |
-
spacy_name="en_core_web_sm",
|
73 |
-
):
|
74 |
-
"""Create a wrapper around a sentence such that the spacy and BPE tokens can be aligned"""
|
75 |
-
self.bpe = get_bpe(bpe_pretrained_name_or_path)
|
76 |
-
self.nlp = get_spacy(spacy_name)
|
77 |
-
|
78 |
-
def fix_sentence(self, s):
|
79 |
-
return " ".join(self.to_spacy(s))
|
80 |
-
|
81 |
-
def to_spacy(self, s):
|
82 |
-
"""Convert a sentence to spacy tokens.
|
83 |
-
|
84 |
-
Note that all contractions are removed in lieu of the word they shorten by taking the 'norm' of the word as defined by spacy.
|
85 |
-
"""
|
86 |
-
doc = self.nlp(s)
|
87 |
-
tokens = [t.norm_ for t in doc]
|
88 |
-
return tokens
|
89 |
-
|
90 |
-
def to_spacy_text(self, s):
|
91 |
-
"""Convert a sentence into the raw tokens as spacy would.
|
92 |
-
|
93 |
-
No contraction expansion."""
|
94 |
-
doc = self.nlp(s)
|
95 |
-
tokens = [t.text for t in doc]
|
96 |
-
return tokens
|
97 |
-
|
98 |
-
def to_bpe(self, s):
|
99 |
-
"""Convert a sentence to bpe tokens"""
|
100 |
-
s = self.fix_sentence(s)
|
101 |
-
s = self.to_bpe_text(s)
|
102 |
-
return s
|
103 |
-
|
104 |
-
def to_bpe_text(self, s):
|
105 |
-
"""Convert a sentence to bpe tokens"""
|
106 |
-
return self.bpe.tokenize(s)
|
107 |
-
|
108 |
-
def to_spacy_meta(self, s):
|
109 |
-
"""Convert a sentence to spacy tokens with important metadata"""
|
110 |
-
doc = self.nlp(s)
|
111 |
-
out = [simplify_spacy_token(t) for t in doc]
|
112 |
-
return out
|
113 |
-
|
114 |
-
def meta_to_hdf5(self, meta):
|
115 |
-
out_dtype = np.dtype(token_dtype)
|
116 |
-
|
117 |
-
out = [tuple([m[d[0]] for d in token_dtype]) for m in meta]
|
118 |
-
return np.array(out, dtype=out_dtype)
|
119 |
-
|
120 |
-
def meta_hdf5_to_obj(self, meta_hdf5):
|
121 |
-
assert len(meta_hdf5) != 0
|
122 |
-
|
123 |
-
keys = meta_hdf5[0].dtype.names
|
124 |
-
out = {k: [] for k in keys}
|
125 |
-
|
126 |
-
for m in meta_hdf5:
|
127 |
-
for k in m.dtype.names:
|
128 |
-
out[k].append(m[k])
|
129 |
-
return out
|
130 |
-
|
131 |
-
def to_spacy_hdf5(self, s):
|
132 |
-
"""Get values for hdf5 store, each row being a tuple of the information desired"""
|
133 |
-
meta = self.to_spacy_meta(s)
|
134 |
-
return self.meta_to_hdf5(meta)
|
135 |
-
|
136 |
-
def to_spacy_hdf5_by_col(self, s):
|
137 |
-
"""Get values for hdf5 store, organized as a dictionary into the metadata"""
|
138 |
-
h5_info = self.to_spacy_hdf5(s)
|
139 |
-
return self.meta_hdf5_to_obj(h5_info)
|
140 |
-
|
141 |
-
def bpe_from_meta_single(self, meta_token):
|
142 |
-
"""Split a single spacy token with metadata into bpe tokens"""
|
143 |
-
|
144 |
-
bpe_tokens = self.to_bpe(meta_token["norm"])
|
145 |
-
|
146 |
-
# print(bpe_tokens)
|
147 |
-
return [assoc("token", b, meta_token) for b in bpe_tokens]
|
148 |
-
|
149 |
-
def bpe_from_spacy_meta(self, spacy_meta):
|
150 |
-
out = flatten_([self.bpe_from_meta_single(sm) for sm in spacy_meta])
|
151 |
-
return out
|
152 |
-
|
153 |
-
def to_bpe_meta(self, s):
|
154 |
-
"""Convert a sentence to bpe tokens with metadata
|
155 |
-
|
156 |
-
Removes all known contractions from input sentence `s`
|
157 |
-
"""
|
158 |
-
bpe = self.to_bpe(s)
|
159 |
-
spacy_meta = self.to_spacy_meta(s)
|
160 |
-
return self.bpe_from_spacy_meta(spacy_meta)
|
161 |
-
|
162 |
-
def to_bpe_meta_from_tokens(self, sentence, bpe_tokens):
|
163 |
-
"""Get the normal BPE metadata, and add nulls wherever a special_token appears"""
|
164 |
-
bpe_meta = self.to_bpe_meta(sentence)
|
165 |
-
|
166 |
-
new_bpe_meta = []
|
167 |
-
j = 0
|
168 |
-
for i, b in enumerate(bpe_tokens):
|
169 |
-
if b in self.bpe.all_special_tokens:
|
170 |
-
new_bpe_meta.append(null_token_filler(b))
|
171 |
-
else:
|
172 |
-
new_bpe_meta.append(bpe_meta[j])
|
173 |
-
j += 1
|
174 |
-
|
175 |
-
return new_bpe_meta
|
176 |
-
|
177 |
-
def to_bpe_hdf5(self, s):
|
178 |
-
"""Format the metadata of a BPE tokenized setence into hdf5 format"""
|
179 |
-
meta = self.to_bpe_meta(s)
|
180 |
-
return self.meta_to_hdf5(meta)
|
181 |
-
|
182 |
-
def to_bpe_hdf5_by_col(self, s):
|
183 |
-
h5_info = self.to_bpe_hdf5(s)
|
184 |
-
return self.meta_hdf5_to_obj(h5_info)
|
185 |
-
|
186 |
-
def meta_tokenize(self, s):
|
187 |
-
return self.to_bpe_meta(s)
|
188 |
-
|
189 |
# [String] -> [String]
|
190 |
def remove_CLS_SEP(toks):
|
191 |
return [t for t in toks if t not in set(["[CLS]", "[SEP]"])]
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
|
|
2 |
from transformers.tokenization_bert import BertTokenizer
|
3 |
from .f import flatten_, assoc, memoize, GetAttr
|
4 |
|
5 |
from typing import List
|
6 |
|
7 |
def fix_byte_spaces(toks: List[str]) -> List[str]:
|
8 |
+
return [t.replace("\u0120", " ").replace("\u010A", "\\n") for t in toks]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
@memoize
|
11 |
def get_bpe(bpe_pretrained_name_or_path):
|
12 |
return BertTokenizer.from_pretrained(bpe_pretrained_name_or_path)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# [String] -> [String]
|
15 |
def remove_CLS_SEP(toks):
|
16 |
return [t for t in toks if t not in set(["[CLS]", "[SEP]"])]
|