import streamlit as st from huggingface_hub import InferenceClient import os import sys st.title("SmallZOO ChatBot 3B") base_url="https://api-inference.huggingface.co/models/" API_KEY = os.environ.get('HG_Interference_API_TOKEN') model_links ={ "Llama-3.2 [3B]":base_url+"meta-llama/Llama-3.2-3B-Instruct", "Qwen2.5 [3B]":base_url+"Qwen/Qwen2.5-3B-Instruct", "Phi-3.5 [3.82B]":base_url+"microsoft/Phi-3.5-mini-instruct" } model_info ={ "Llama-3.2 [3B]": {'description':"""The Llama-3.2 3B Instruct model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ \nA SLM (Large Language Model) is best for applications requiring fast response times, low resource consumption, and specific, narrow tasks. \n""", 'logo':'logos/Meta.png', 'url':'https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct'}, "Qwen2.5 [3B]": {'description':"""The Qwen2.5 3B Instruct model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ \nA SLM (Large Language Model) is best for applications requiring fast response times, low resource consumption, and specific, narrow tasks. \\n""", 'logo':'logos/Qwen.png', 'url':'https://huggingface.co/Qwen/Qwen2.5-3B-Instruct'}, "Phi-3.5 [3.82B]": {'description':"""The Phi-3.5 mini instruct model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ \nA SLM (Large Language Model) is best for applications requiring fast response times, low resource consumption, and specific, narrow tasks. \ \n""", 'logo':'logos/ms.png', 'url':'https://huggingface.co/microsoft/Phi-3.5-mini-instruct'}, } def reset_conversation(): ''' Resets Conversation ''' st.session_state.conversation = [] st.session_state.messages = [] return None models =[key for key in model_links.keys()] selected_model = st.sidebar.selectbox( "Select Model", models, help="""Choose your AI model: • Llama-3.2: Balanced & versatile • Qwen2.5: Strong in reasoning • Phi-3.5: Good at technical tasks""" ) temp_value = st.sidebar.slider( 'Select a temperature value', 0.0, 1.0, (0.5), help="""Controls randomness in responses: 0 = focused/deterministic 0.5 = balanced 1 = more creative/random""" ) custom_instructions = st.sidebar.text_area( "Custom System Instructions", value="You are helpful assistant, act like a Human in conversation. Keep answers very short and in English only!", help="Customize how the AI should behave" ) st.sidebar.button('Reset Chat', on_click=reset_conversation) st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown(model_info[selected_model]['description']) st.sidebar.image(model_info[selected_model]['logo']) st.sidebar.markdown(f"[View model on 🤗 Hugging Face]({model_info[selected_model]['url']})") st.sidebar.markdown("*Generated content can be outdated, inaccurate, offensive or non-factual!!!*") if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] # st.write(f"Changed to {selected_model}") st.session_state.prev_option = selected_model reset_conversation() repo_id = model_links[selected_model] st.subheader(f'{selected_model}') # st.title(f'ChatBot Using {selected_model}') if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"): with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "system", "content": custom_instructions}) st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("assistant"): client = InferenceClient( model=model_links[selected_model],) try: output = client.text_generation( prompt, temperature=temp_value,#0.5 max_new_tokens=3000, stream=True ) # Create a placeholder for the streaming response message_placeholder = st.empty() full_response = "" # Stream the response and accumulate it for chunk in output: if isinstance(chunk, dict) and "generated_text" in chunk: text_chunk = chunk["generated_text"] elif isinstance(chunk, str): text_chunk = chunk else: continue full_response += text_chunk message_placeholder.markdown(full_response + "▌") # Display final response and store it message_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response}) except Exception as e: st.error(f"Error: {str(e)}")