Spaces:
Running
on
Zero
Running
on
Zero
Uploading the app
Browse files- .gitignore +2 -0
- SDXL/diff_pipe.py +1048 -0
- SDXL/run.py +66 -0
- app.py +81 -0
- readme.md +90 -0
- requirements.txt +94 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.idea
|
2 |
+
__pycache__
|
SDXL/diff_pipe.py
ADDED
@@ -0,0 +1,1048 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import PIL.Image
|
20 |
+
import torch
|
21 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
22 |
+
import torchvision
|
23 |
+
|
24 |
+
from diffusers.image_processor import VaeImageProcessor
|
25 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
26 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
27 |
+
from diffusers.models.attention_processor import (
|
28 |
+
AttnProcessor2_0,
|
29 |
+
LoRAAttnProcessor2_0,
|
30 |
+
LoRAXFormersAttnProcessor,
|
31 |
+
XFormersAttnProcessor,
|
32 |
+
)
|
33 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
34 |
+
from diffusers.utils import (
|
35 |
+
is_accelerate_available,
|
36 |
+
is_accelerate_version,
|
37 |
+
is_invisible_watermark_available,
|
38 |
+
logging,
|
39 |
+
randn_tensor,
|
40 |
+
replace_example_docstring,
|
41 |
+
)
|
42 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
43 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
44 |
+
|
45 |
+
|
46 |
+
if is_invisible_watermark_available():
|
47 |
+
from .watermark import StableDiffusionXLWatermarker
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
51 |
+
|
52 |
+
EXAMPLE_DOC_STRING = """
|
53 |
+
Examples:
|
54 |
+
```py
|
55 |
+
>>> import torch
|
56 |
+
>>> from diffusers import StableDiffusionXLImg2ImgPipeline
|
57 |
+
>>> from diffusers.utils import load_image
|
58 |
+
|
59 |
+
>>> pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
60 |
+
... "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16
|
61 |
+
... )
|
62 |
+
>>> pipe = pipe.to("cuda")
|
63 |
+
>>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"
|
64 |
+
|
65 |
+
>>> init_image = load_image(url).convert("RGB")
|
66 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
67 |
+
>>> image = pipe(prompt, image=init_image).images[0]
|
68 |
+
```
|
69 |
+
"""
|
70 |
+
|
71 |
+
|
72 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
73 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
74 |
+
"""
|
75 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
76 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
77 |
+
"""
|
78 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
79 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
80 |
+
# rescale the results from guidance (fixes overexposure)
|
81 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
82 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
83 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
84 |
+
return noise_cfg
|
85 |
+
|
86 |
+
|
87 |
+
class StableDiffusionXLDiffImg2ImgPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
|
88 |
+
r"""
|
89 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
90 |
+
|
91 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
92 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
93 |
+
|
94 |
+
In addition the pipeline inherits the following loading methods:
|
95 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
96 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
|
97 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
98 |
+
|
99 |
+
as well as the following saving methods:
|
100 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
|
101 |
+
|
102 |
+
Args:
|
103 |
+
vae ([`AutoencoderKL`]):
|
104 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
105 |
+
text_encoder ([`CLIPTextModel`]):
|
106 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
107 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
108 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
109 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
110 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
111 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
112 |
+
specifically the
|
113 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
114 |
+
variant.
|
115 |
+
tokenizer (`CLIPTokenizer`):
|
116 |
+
Tokenizer of class
|
117 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
118 |
+
tokenizer_2 (`CLIPTokenizer`):
|
119 |
+
Second Tokenizer of class
|
120 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
121 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
122 |
+
scheduler ([`SchedulerMixin`]):
|
123 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
124 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
125 |
+
"""
|
126 |
+
_optional_components = ["tokenizer", "text_encoder"]
|
127 |
+
|
128 |
+
def __init__(
|
129 |
+
self,
|
130 |
+
vae: AutoencoderKL,
|
131 |
+
text_encoder: CLIPTextModel,
|
132 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
133 |
+
tokenizer: CLIPTokenizer,
|
134 |
+
tokenizer_2: CLIPTokenizer,
|
135 |
+
unet: UNet2DConditionModel,
|
136 |
+
scheduler: KarrasDiffusionSchedulers,
|
137 |
+
requires_aesthetics_score: bool = False,
|
138 |
+
force_zeros_for_empty_prompt: bool = True,
|
139 |
+
add_watermarker: Optional[bool] = None,
|
140 |
+
):
|
141 |
+
super().__init__()
|
142 |
+
|
143 |
+
self.register_modules(
|
144 |
+
vae=vae,
|
145 |
+
text_encoder=text_encoder,
|
146 |
+
text_encoder_2=text_encoder_2,
|
147 |
+
tokenizer=tokenizer,
|
148 |
+
tokenizer_2=tokenizer_2,
|
149 |
+
unet=unet,
|
150 |
+
scheduler=scheduler,
|
151 |
+
)
|
152 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
153 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
154 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
155 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
156 |
+
|
157 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
158 |
+
|
159 |
+
if add_watermarker:
|
160 |
+
self.watermark = StableDiffusionXLWatermarker()
|
161 |
+
else:
|
162 |
+
self.watermark = None
|
163 |
+
|
164 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
165 |
+
def enable_vae_slicing(self):
|
166 |
+
r"""
|
167 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
168 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
169 |
+
"""
|
170 |
+
self.vae.enable_slicing()
|
171 |
+
|
172 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
173 |
+
def disable_vae_slicing(self):
|
174 |
+
r"""
|
175 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
176 |
+
computing decoding in one step.
|
177 |
+
"""
|
178 |
+
self.vae.disable_slicing()
|
179 |
+
|
180 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
181 |
+
def enable_vae_tiling(self):
|
182 |
+
r"""
|
183 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
184 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
185 |
+
processing larger images.
|
186 |
+
"""
|
187 |
+
self.vae.enable_tiling()
|
188 |
+
|
189 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
190 |
+
def disable_vae_tiling(self):
|
191 |
+
r"""
|
192 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
193 |
+
computing decoding in one step.
|
194 |
+
"""
|
195 |
+
self.vae.disable_tiling()
|
196 |
+
|
197 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
198 |
+
r"""
|
199 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
200 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
201 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
202 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
203 |
+
"""
|
204 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
205 |
+
from accelerate import cpu_offload_with_hook
|
206 |
+
else:
|
207 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
208 |
+
|
209 |
+
device = torch.device(f"cuda:{gpu_id}")
|
210 |
+
|
211 |
+
if self.device.type != "cpu":
|
212 |
+
self.to("cpu", silence_dtype_warnings=True)
|
213 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
214 |
+
|
215 |
+
model_sequence = (
|
216 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
217 |
+
)
|
218 |
+
model_sequence.extend([self.unet, self.vae])
|
219 |
+
|
220 |
+
hook = None
|
221 |
+
for cpu_offloaded_model in model_sequence:
|
222 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
223 |
+
|
224 |
+
# We'll offload the last model manually.
|
225 |
+
self.final_offload_hook = hook
|
226 |
+
|
227 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
228 |
+
def encode_prompt(
|
229 |
+
self,
|
230 |
+
prompt: str,
|
231 |
+
prompt_2: Optional[str] = None,
|
232 |
+
device: Optional[torch.device] = None,
|
233 |
+
num_images_per_prompt: int = 1,
|
234 |
+
do_classifier_free_guidance: bool = True,
|
235 |
+
negative_prompt: Optional[str] = None,
|
236 |
+
negative_prompt_2: Optional[str] = None,
|
237 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
238 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
239 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
240 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
241 |
+
lora_scale: Optional[float] = None,
|
242 |
+
):
|
243 |
+
r"""
|
244 |
+
Encodes the prompt into text encoder hidden states.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
prompt (`str` or `List[str]`, *optional*):
|
248 |
+
prompt to be encoded
|
249 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
250 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
251 |
+
used in both text-encoders
|
252 |
+
device: (`torch.device`):
|
253 |
+
torch device
|
254 |
+
num_images_per_prompt (`int`):
|
255 |
+
number of images that should be generated per prompt
|
256 |
+
do_classifier_free_guidance (`bool`):
|
257 |
+
whether to use classifier free guidance or not
|
258 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
259 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
260 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
261 |
+
less than `1`).
|
262 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
263 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
264 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
265 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
266 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
267 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
268 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
269 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
270 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
271 |
+
argument.
|
272 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
273 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
274 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
275 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
276 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
277 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
278 |
+
input argument.
|
279 |
+
lora_scale (`float`, *optional*):
|
280 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
281 |
+
"""
|
282 |
+
device = device or self._execution_device
|
283 |
+
|
284 |
+
# set lora scale so that monkey patched LoRA
|
285 |
+
# function of text encoder can correctly access it
|
286 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
287 |
+
self._lora_scale = lora_scale
|
288 |
+
|
289 |
+
if prompt is not None and isinstance(prompt, str):
|
290 |
+
batch_size = 1
|
291 |
+
elif prompt is not None and isinstance(prompt, list):
|
292 |
+
batch_size = len(prompt)
|
293 |
+
else:
|
294 |
+
batch_size = prompt_embeds.shape[0]
|
295 |
+
|
296 |
+
# Define tokenizers and text encoders
|
297 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
298 |
+
text_encoders = (
|
299 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
300 |
+
)
|
301 |
+
|
302 |
+
if prompt_embeds is None:
|
303 |
+
prompt_2 = prompt_2 or prompt
|
304 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
305 |
+
prompt_embeds_list = []
|
306 |
+
prompts = [prompt, prompt_2]
|
307 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
308 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
309 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
310 |
+
|
311 |
+
text_inputs = tokenizer(
|
312 |
+
prompt,
|
313 |
+
padding="max_length",
|
314 |
+
max_length=tokenizer.model_max_length,
|
315 |
+
truncation=True,
|
316 |
+
return_tensors="pt",
|
317 |
+
)
|
318 |
+
|
319 |
+
text_input_ids = text_inputs.input_ids
|
320 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
321 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
322 |
+
|
323 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
324 |
+
text_input_ids, untruncated_ids
|
325 |
+
):
|
326 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
327 |
+
logger.warning(
|
328 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
329 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
330 |
+
)
|
331 |
+
|
332 |
+
prompt_embeds = text_encoder(
|
333 |
+
text_input_ids.to(device),
|
334 |
+
output_hidden_states=True,
|
335 |
+
)
|
336 |
+
|
337 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
338 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
339 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
340 |
+
|
341 |
+
prompt_embeds_list.append(prompt_embeds)
|
342 |
+
|
343 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
344 |
+
|
345 |
+
# get unconditional embeddings for classifier free guidance
|
346 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
347 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
348 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
349 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
350 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
351 |
+
negative_prompt = negative_prompt or ""
|
352 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
353 |
+
|
354 |
+
uncond_tokens: List[str]
|
355 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
356 |
+
raise TypeError(
|
357 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
358 |
+
f" {type(prompt)}."
|
359 |
+
)
|
360 |
+
elif isinstance(negative_prompt, str):
|
361 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
362 |
+
elif batch_size != len(negative_prompt):
|
363 |
+
raise ValueError(
|
364 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
365 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
366 |
+
" the batch size of `prompt`."
|
367 |
+
)
|
368 |
+
else:
|
369 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
370 |
+
|
371 |
+
negative_prompt_embeds_list = []
|
372 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
373 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
374 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
375 |
+
|
376 |
+
max_length = prompt_embeds.shape[1]
|
377 |
+
uncond_input = tokenizer(
|
378 |
+
negative_prompt,
|
379 |
+
padding="max_length",
|
380 |
+
max_length=max_length,
|
381 |
+
truncation=True,
|
382 |
+
return_tensors="pt",
|
383 |
+
)
|
384 |
+
|
385 |
+
negative_prompt_embeds = text_encoder(
|
386 |
+
uncond_input.input_ids.to(device),
|
387 |
+
output_hidden_states=True,
|
388 |
+
)
|
389 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
390 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
391 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
392 |
+
|
393 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
394 |
+
|
395 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
396 |
+
|
397 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
398 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
399 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
400 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
401 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
402 |
+
|
403 |
+
if do_classifier_free_guidance:
|
404 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
405 |
+
seq_len = negative_prompt_embeds.shape[1]
|
406 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
407 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
408 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
409 |
+
|
410 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
411 |
+
bs_embed * num_images_per_prompt, -1
|
412 |
+
)
|
413 |
+
if do_classifier_free_guidance:
|
414 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
415 |
+
bs_embed * num_images_per_prompt, -1
|
416 |
+
)
|
417 |
+
|
418 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
419 |
+
|
420 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
421 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
422 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
423 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
424 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
425 |
+
# and should be between [0, 1]
|
426 |
+
|
427 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
428 |
+
extra_step_kwargs = {}
|
429 |
+
if accepts_eta:
|
430 |
+
extra_step_kwargs["eta"] = eta
|
431 |
+
|
432 |
+
# check if the scheduler accepts generator
|
433 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
434 |
+
if accepts_generator:
|
435 |
+
extra_step_kwargs["generator"] = generator
|
436 |
+
return extra_step_kwargs
|
437 |
+
|
438 |
+
def check_inputs(
|
439 |
+
self,
|
440 |
+
prompt,
|
441 |
+
prompt_2,
|
442 |
+
strength,
|
443 |
+
num_inference_steps,
|
444 |
+
callback_steps,
|
445 |
+
negative_prompt=None,
|
446 |
+
negative_prompt_2=None,
|
447 |
+
prompt_embeds=None,
|
448 |
+
negative_prompt_embeds=None,
|
449 |
+
):
|
450 |
+
if strength < 0 or strength > 1:
|
451 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
452 |
+
if num_inference_steps is None:
|
453 |
+
raise ValueError("`num_inference_steps` cannot be None.")
|
454 |
+
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
455 |
+
raise ValueError(
|
456 |
+
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
457 |
+
f" {type(num_inference_steps)}."
|
458 |
+
)
|
459 |
+
if (callback_steps is None) or (
|
460 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
461 |
+
):
|
462 |
+
raise ValueError(
|
463 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
464 |
+
f" {type(callback_steps)}."
|
465 |
+
)
|
466 |
+
|
467 |
+
if prompt is not None and prompt_embeds is not None:
|
468 |
+
raise ValueError(
|
469 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
470 |
+
" only forward one of the two."
|
471 |
+
)
|
472 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
473 |
+
raise ValueError(
|
474 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
475 |
+
" only forward one of the two."
|
476 |
+
)
|
477 |
+
elif prompt is None and prompt_embeds is None:
|
478 |
+
raise ValueError(
|
479 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
480 |
+
)
|
481 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
482 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
483 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
484 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
485 |
+
|
486 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
487 |
+
raise ValueError(
|
488 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
489 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
490 |
+
)
|
491 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
492 |
+
raise ValueError(
|
493 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
494 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
495 |
+
)
|
496 |
+
|
497 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
498 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
499 |
+
raise ValueError(
|
500 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
501 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
502 |
+
f" {negative_prompt_embeds.shape}."
|
503 |
+
)
|
504 |
+
|
505 |
+
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
|
506 |
+
# get the original timestep using init_timestep
|
507 |
+
if denoising_start is None:
|
508 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
509 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
510 |
+
else:
|
511 |
+
t_start = 0
|
512 |
+
|
513 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
514 |
+
|
515 |
+
# Strength is irrelevant if we directly request a timestep to start at;
|
516 |
+
# that is, strength is determined by the denoising_start instead.
|
517 |
+
if denoising_start is not None:
|
518 |
+
discrete_timestep_cutoff = int(
|
519 |
+
round(
|
520 |
+
self.scheduler.config.num_train_timesteps
|
521 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
522 |
+
)
|
523 |
+
)
|
524 |
+
timesteps = list(filter(lambda ts: ts < discrete_timestep_cutoff, timesteps))
|
525 |
+
return torch.tensor(timesteps), len(timesteps)
|
526 |
+
|
527 |
+
return timesteps, num_inference_steps - t_start
|
528 |
+
|
529 |
+
def prepare_latents(
|
530 |
+
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
|
531 |
+
):
|
532 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
533 |
+
raise ValueError(
|
534 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
535 |
+
)
|
536 |
+
|
537 |
+
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
538 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
539 |
+
self.text_encoder_2.to("cpu")
|
540 |
+
torch.cuda.empty_cache()
|
541 |
+
|
542 |
+
image = image.to(device=device, dtype=dtype)
|
543 |
+
|
544 |
+
batch_size = batch_size * num_images_per_prompt
|
545 |
+
|
546 |
+
if image.shape[1] == 4:
|
547 |
+
init_latents = image
|
548 |
+
|
549 |
+
else:
|
550 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
551 |
+
if self.vae.config.force_upcast:
|
552 |
+
image = image.float()
|
553 |
+
self.vae.to(dtype=torch.float32)
|
554 |
+
|
555 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
556 |
+
raise ValueError(
|
557 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
558 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
559 |
+
)
|
560 |
+
|
561 |
+
elif isinstance(generator, list):
|
562 |
+
init_latents = [
|
563 |
+
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
564 |
+
]
|
565 |
+
init_latents = torch.cat(init_latents, dim=0)
|
566 |
+
else:
|
567 |
+
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
568 |
+
|
569 |
+
if self.vae.config.force_upcast:
|
570 |
+
self.vae.to(dtype)
|
571 |
+
|
572 |
+
init_latents = init_latents.to(dtype)
|
573 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
574 |
+
|
575 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
576 |
+
# expand init_latents for batch_size
|
577 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
578 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
579 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
580 |
+
raise ValueError(
|
581 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
582 |
+
)
|
583 |
+
else:
|
584 |
+
init_latents = torch.cat([init_latents], dim=0)
|
585 |
+
|
586 |
+
if add_noise:
|
587 |
+
shape = init_latents.shape
|
588 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
589 |
+
# get latents
|
590 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
591 |
+
|
592 |
+
latents = init_latents
|
593 |
+
|
594 |
+
return latents
|
595 |
+
|
596 |
+
def _get_add_time_ids(
|
597 |
+
self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, dtype
|
598 |
+
):
|
599 |
+
if self.config.requires_aesthetics_score:
|
600 |
+
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
601 |
+
add_neg_time_ids = list(original_size + crops_coords_top_left + (negative_aesthetic_score,))
|
602 |
+
else:
|
603 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
604 |
+
add_neg_time_ids = list(original_size + crops_coords_top_left + target_size)
|
605 |
+
|
606 |
+
passed_add_embed_dim = (
|
607 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
608 |
+
)
|
609 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
610 |
+
|
611 |
+
if (
|
612 |
+
expected_add_embed_dim > passed_add_embed_dim
|
613 |
+
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
614 |
+
):
|
615 |
+
raise ValueError(
|
616 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
617 |
+
)
|
618 |
+
elif (
|
619 |
+
expected_add_embed_dim < passed_add_embed_dim
|
620 |
+
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
621 |
+
):
|
622 |
+
raise ValueError(
|
623 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
624 |
+
)
|
625 |
+
elif expected_add_embed_dim != passed_add_embed_dim:
|
626 |
+
raise ValueError(
|
627 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
628 |
+
)
|
629 |
+
|
630 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
631 |
+
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
632 |
+
|
633 |
+
return add_time_ids, add_neg_time_ids
|
634 |
+
|
635 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
636 |
+
def upcast_vae(self):
|
637 |
+
dtype = self.vae.dtype
|
638 |
+
self.vae.to(dtype=torch.float32)
|
639 |
+
use_torch_2_0_or_xformers = isinstance(
|
640 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
641 |
+
(
|
642 |
+
AttnProcessor2_0,
|
643 |
+
XFormersAttnProcessor,
|
644 |
+
LoRAXFormersAttnProcessor,
|
645 |
+
LoRAAttnProcessor2_0,
|
646 |
+
),
|
647 |
+
)
|
648 |
+
# if xformers or torch_2_0 is used attention block does not need
|
649 |
+
# to be in float32 which can save lots of memory
|
650 |
+
if use_torch_2_0_or_xformers:
|
651 |
+
self.vae.post_quant_conv.to(dtype)
|
652 |
+
self.vae.decoder.conv_in.to(dtype)
|
653 |
+
self.vae.decoder.mid_block.to(dtype)
|
654 |
+
|
655 |
+
@torch.no_grad()
|
656 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
657 |
+
def __call__(
|
658 |
+
self,
|
659 |
+
prompt: Union[str, List[str]] = None,
|
660 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
661 |
+
image: Union[
|
662 |
+
torch.FloatTensor,
|
663 |
+
PIL.Image.Image,
|
664 |
+
np.ndarray,
|
665 |
+
List[torch.FloatTensor],
|
666 |
+
List[PIL.Image.Image],
|
667 |
+
List[np.ndarray],
|
668 |
+
] = None,
|
669 |
+
strength: float = 0.3,
|
670 |
+
num_inference_steps: int = 50,
|
671 |
+
denoising_start: Optional[float] = None,
|
672 |
+
denoising_end: Optional[float] = None,
|
673 |
+
guidance_scale: float = 5.0,
|
674 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
675 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
676 |
+
num_images_per_prompt: Optional[int] = 1,
|
677 |
+
eta: float = 0.0,
|
678 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
679 |
+
latents: Optional[torch.FloatTensor] = None,
|
680 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
681 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
682 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
683 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
684 |
+
output_type: Optional[str] = "pil",
|
685 |
+
return_dict: bool = True,
|
686 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
687 |
+
callback_steps: int = 1,
|
688 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
689 |
+
guidance_rescale: float = 0.0,
|
690 |
+
original_size: Tuple[int, int] = None,
|
691 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
692 |
+
target_size: Tuple[int, int] = None,
|
693 |
+
aesthetic_score: float = 6.0,
|
694 |
+
negative_aesthetic_score: float = 2.5,
|
695 |
+
map: torch.FloatTensor = None,
|
696 |
+
original_image: Union[
|
697 |
+
torch.FloatTensor,
|
698 |
+
PIL.Image.Image,
|
699 |
+
np.ndarray,
|
700 |
+
List[torch.FloatTensor],
|
701 |
+
List[PIL.Image.Image],
|
702 |
+
List[np.ndarray],
|
703 |
+
] = None,
|
704 |
+
):
|
705 |
+
r"""
|
706 |
+
Function invoked when calling the pipeline for generation.
|
707 |
+
|
708 |
+
Args:
|
709 |
+
prompt (`str` or `List[str]`, *optional*):
|
710 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
711 |
+
instead.
|
712 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
713 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
714 |
+
used in both text-encoders
|
715 |
+
image (`torch.FloatTensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
|
716 |
+
The image(s) to modify with the pipeline.
|
717 |
+
strength (`float`, *optional*, defaults to 0.3):
|
718 |
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
719 |
+
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
720 |
+
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
721 |
+
be maximum and the denoising process will run for the full number of iterations specified in
|
722 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of
|
723 |
+
`denoising_start` being declared as an integer, the value of `strength` will be ignored.
|
724 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
725 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
726 |
+
expense of slower inference.
|
727 |
+
denoising_start (`float`, *optional*):
|
728 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
729 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
730 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
731 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
732 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
|
733 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
734 |
+
denoising_end (`float`, *optional*):
|
735 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
736 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
737 |
+
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
|
738 |
+
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
|
739 |
+
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
|
740 |
+
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
741 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
742 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
743 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
744 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
745 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
746 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
747 |
+
usually at the expense of lower image quality.
|
748 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
749 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
750 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
751 |
+
less than `1`).
|
752 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
753 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
754 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
755 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
756 |
+
The number of images to generate per prompt.
|
757 |
+
eta (`float`, *optional*, defaults to 0.0):
|
758 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
759 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
760 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
761 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
762 |
+
to make generation deterministic.
|
763 |
+
latents (`torch.FloatTensor`, *optional*):
|
764 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
765 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
766 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
767 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
768 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
769 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
770 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
771 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
772 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
773 |
+
argument.
|
774 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
775 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
776 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
777 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
778 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
779 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
780 |
+
input argument.
|
781 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
782 |
+
The output format of the generate image. Choose between
|
783 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
784 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
785 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
|
786 |
+
plain tuple.
|
787 |
+
callback (`Callable`, *optional*):
|
788 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
789 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
790 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
791 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
792 |
+
called at every step.
|
793 |
+
cross_attention_kwargs (`dict`, *optional*):
|
794 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
795 |
+
`self.processor` in
|
796 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
797 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
798 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
799 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
800 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
801 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
802 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
803 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
804 |
+
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
805 |
+
explained in section 2.2 of
|
806 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
807 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
808 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
809 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
810 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
811 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
812 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
813 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
814 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
815 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
816 |
+
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
817 |
+
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
818 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
819 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
820 |
+
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
821 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
822 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
823 |
+
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
824 |
+
|
825 |
+
Examples:
|
826 |
+
|
827 |
+
Returns:
|
828 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
829 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
830 |
+
`tuple. When returning a tuple, the first element is a list with the generated images.
|
831 |
+
"""
|
832 |
+
# 1. Check inputs. Raise error if not correct
|
833 |
+
self.check_inputs(
|
834 |
+
prompt,
|
835 |
+
prompt_2,
|
836 |
+
strength,
|
837 |
+
num_inference_steps,
|
838 |
+
callback_steps,
|
839 |
+
negative_prompt,
|
840 |
+
negative_prompt_2,
|
841 |
+
prompt_embeds,
|
842 |
+
negative_prompt_embeds,
|
843 |
+
)
|
844 |
+
|
845 |
+
# 2. Define call parameters
|
846 |
+
if prompt is not None and isinstance(prompt, str):
|
847 |
+
batch_size = 1
|
848 |
+
elif prompt is not None and isinstance(prompt, list):
|
849 |
+
batch_size = len(prompt)
|
850 |
+
else:
|
851 |
+
batch_size = prompt_embeds.shape[0]
|
852 |
+
|
853 |
+
device = self._execution_device
|
854 |
+
|
855 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
856 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
857 |
+
# corresponds to doing no classifier free guidance.
|
858 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
859 |
+
|
860 |
+
# 3. Encode input prompt
|
861 |
+
text_encoder_lora_scale = (
|
862 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
863 |
+
)
|
864 |
+
(
|
865 |
+
prompt_embeds,
|
866 |
+
negative_prompt_embeds,
|
867 |
+
pooled_prompt_embeds,
|
868 |
+
negative_pooled_prompt_embeds,
|
869 |
+
) = self.encode_prompt(
|
870 |
+
prompt=prompt,
|
871 |
+
prompt_2=prompt_2,
|
872 |
+
device=device,
|
873 |
+
num_images_per_prompt=num_images_per_prompt,
|
874 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
875 |
+
negative_prompt=negative_prompt,
|
876 |
+
negative_prompt_2=negative_prompt_2,
|
877 |
+
prompt_embeds=prompt_embeds,
|
878 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
879 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
880 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
881 |
+
lora_scale=text_encoder_lora_scale,
|
882 |
+
)
|
883 |
+
|
884 |
+
# 4. Preprocess image
|
885 |
+
#image = self.image_processor.preprocess(image) #ideally we would have preprocess the image with diffusers, but for this POC we won't --- it throws a deprecated warning
|
886 |
+
map = torchvision.transforms.Resize(tuple(s // self.vae_scale_factor for s in original_image.shape[2:]),antialias=None)(map)
|
887 |
+
# 5. Prepare timesteps
|
888 |
+
def denoising_value_valid(dnv):
|
889 |
+
return type(denoising_end) == float and 0 < dnv < 1
|
890 |
+
|
891 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
892 |
+
#begin diff diff change
|
893 |
+
total_time_steps = num_inference_steps
|
894 |
+
#end diff diff change
|
895 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
896 |
+
num_inference_steps, strength, device, denoising_start=denoising_start if denoising_value_valid else None
|
897 |
+
)
|
898 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
899 |
+
|
900 |
+
add_noise = True if denoising_start is None else False
|
901 |
+
# 6. Prepare latent variables
|
902 |
+
latents = self.prepare_latents(
|
903 |
+
image,
|
904 |
+
latent_timestep,
|
905 |
+
batch_size,
|
906 |
+
num_images_per_prompt,
|
907 |
+
prompt_embeds.dtype,
|
908 |
+
device,
|
909 |
+
generator,
|
910 |
+
add_noise,
|
911 |
+
)
|
912 |
+
# 7. Prepare extra step kwargs.
|
913 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
914 |
+
|
915 |
+
height, width = latents.shape[-2:]
|
916 |
+
height = height * self.vae_scale_factor
|
917 |
+
width = width * self.vae_scale_factor
|
918 |
+
|
919 |
+
original_size = original_size or (height, width)
|
920 |
+
target_size = target_size or (height, width)
|
921 |
+
|
922 |
+
# 8. Prepare added time ids & embeddings
|
923 |
+
add_text_embeds = pooled_prompt_embeds
|
924 |
+
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
925 |
+
original_size,
|
926 |
+
crops_coords_top_left,
|
927 |
+
target_size,
|
928 |
+
aesthetic_score,
|
929 |
+
negative_aesthetic_score,
|
930 |
+
dtype=prompt_embeds.dtype,
|
931 |
+
)
|
932 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
933 |
+
|
934 |
+
if do_classifier_free_guidance:
|
935 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
936 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
937 |
+
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
938 |
+
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
939 |
+
|
940 |
+
prompt_embeds = prompt_embeds.to(device)
|
941 |
+
add_text_embeds = add_text_embeds.to(device)
|
942 |
+
add_time_ids = add_time_ids.to(device)
|
943 |
+
|
944 |
+
# 9. Denoising loop
|
945 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
946 |
+
|
947 |
+
|
948 |
+
# 9.1 Apply denoising_end
|
949 |
+
if (
|
950 |
+
denoising_end is not None
|
951 |
+
and denoising_start is not None
|
952 |
+
and denoising_value_valid(denoising_end)
|
953 |
+
and denoising_value_valid(denoising_start)
|
954 |
+
and denoising_start >= denoising_end
|
955 |
+
):
|
956 |
+
raise ValueError(
|
957 |
+
f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: "
|
958 |
+
+ f" {denoising_end} when using type float."
|
959 |
+
)
|
960 |
+
elif denoising_end is not None and denoising_value_valid(denoising_end):
|
961 |
+
discrete_timestep_cutoff = int(
|
962 |
+
round(
|
963 |
+
self.scheduler.config.num_train_timesteps
|
964 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
965 |
+
)
|
966 |
+
)
|
967 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
968 |
+
timesteps = timesteps[:num_inference_steps]
|
969 |
+
|
970 |
+
# prepartions for diff diff
|
971 |
+
original_with_noise = self.prepare_latents(
|
972 |
+
original_image, timesteps, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
|
973 |
+
)
|
974 |
+
thresholds = torch.arange(total_time_steps, dtype=map.dtype) / total_time_steps
|
975 |
+
thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device)
|
976 |
+
masks = map > (thresholds + (denoising_start or 0))
|
977 |
+
# end diff diff preparations
|
978 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
979 |
+
for i, t in enumerate(timesteps):
|
980 |
+
# diff diff
|
981 |
+
if i==0 and denoising_start is None:
|
982 |
+
latents = original_with_noise[:1]
|
983 |
+
else:
|
984 |
+
mask = masks[i].unsqueeze(0)
|
985 |
+
# cast mask to the same type as latents etc
|
986 |
+
mask = mask.to(latents.dtype)
|
987 |
+
mask = mask.unsqueeze(1) # fit shape
|
988 |
+
latents = original_with_noise[i] * mask + latents * (1 - mask)
|
989 |
+
# end diff diff
|
990 |
+
# expand the latents if we are doing classifier free guidance
|
991 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
992 |
+
|
993 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
994 |
+
|
995 |
+
# predict the noise residual
|
996 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
997 |
+
noise_pred = self.unet(
|
998 |
+
latent_model_input,
|
999 |
+
t,
|
1000 |
+
encoder_hidden_states=prompt_embeds,
|
1001 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1002 |
+
added_cond_kwargs=added_cond_kwargs,
|
1003 |
+
return_dict=False,
|
1004 |
+
)[0]
|
1005 |
+
|
1006 |
+
# perform guidance
|
1007 |
+
if do_classifier_free_guidance:
|
1008 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1009 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1010 |
+
|
1011 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1012 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1013 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1014 |
+
|
1015 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1016 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1017 |
+
|
1018 |
+
# call the callback, if provided
|
1019 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1020 |
+
progress_bar.update()
|
1021 |
+
if callback is not None and i % callback_steps == 0:
|
1022 |
+
callback(i, t, latents)
|
1023 |
+
|
1024 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1025 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
1026 |
+
self.upcast_vae()
|
1027 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1028 |
+
|
1029 |
+
if not output_type == "latent":
|
1030 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1031 |
+
else:
|
1032 |
+
image = latents
|
1033 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
1034 |
+
|
1035 |
+
# apply watermark if available
|
1036 |
+
if self.watermark is not None:
|
1037 |
+
image = self.watermark.apply_watermark(image)
|
1038 |
+
|
1039 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1040 |
+
|
1041 |
+
# Offload last model to CPU
|
1042 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1043 |
+
self.final_offload_hook.offload()
|
1044 |
+
|
1045 |
+
if not return_dict:
|
1046 |
+
return (image,)
|
1047 |
+
|
1048 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
SDXL/run.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
from torchvision import transforms
|
4 |
+
from diff_pipe import StableDiffusionXLDiffImg2ImgPipeline
|
5 |
+
|
6 |
+
device = "cuda"
|
7 |
+
|
8 |
+
base = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
9 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
10 |
+
).to(device)
|
11 |
+
|
12 |
+
refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
13 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
14 |
+
text_encoder_2=base.text_encoder_2,
|
15 |
+
vae=base.vae,
|
16 |
+
torch_dtype=torch.float16,
|
17 |
+
use_safetensors=True,
|
18 |
+
variant="fp16",
|
19 |
+
).to(device)
|
20 |
+
|
21 |
+
|
22 |
+
def preprocess_image(image):
|
23 |
+
image = image.convert("RGB")
|
24 |
+
image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
|
25 |
+
image = transforms.ToTensor()(image)
|
26 |
+
image = image * 2 - 1
|
27 |
+
image = image.unsqueeze(0).to(device)
|
28 |
+
return image
|
29 |
+
|
30 |
+
|
31 |
+
def preprocess_map(map):
|
32 |
+
map = map.convert("L")
|
33 |
+
map = transforms.CenterCrop((map.size[1] // 64 * 64, map.size[0] // 64 * 64))(map)
|
34 |
+
# convert to tensor
|
35 |
+
map = transforms.ToTensor()(map)
|
36 |
+
map = map.to(device)
|
37 |
+
return map
|
38 |
+
|
39 |
+
|
40 |
+
with Image.open("assets/input2.jpg") as imageFile:
|
41 |
+
image = preprocess_image(imageFile)
|
42 |
+
|
43 |
+
with Image.open("assets/map2.jpg") as mapFile:
|
44 |
+
map = preprocess_map(mapFile)
|
45 |
+
|
46 |
+
prompt = ["painting of a mountain landscape with a meadow and a forest, meadow background"]
|
47 |
+
negative_prompt = ["blurry, shadow polaroid photo, scary angry pose"]
|
48 |
+
|
49 |
+
edited_images = base(prompt=prompt, original_image=image, image=image, strength=1, guidance_scale=17.5,
|
50 |
+
num_images_per_prompt=1,
|
51 |
+
negative_prompt=negative_prompt,
|
52 |
+
map=map,
|
53 |
+
num_inference_steps=100, denoising_end=0.8, output_type="latent").images
|
54 |
+
|
55 |
+
edited_images = refiner(prompt=prompt, original_image=image, image=edited_images, strength=1, guidance_scale=17.5,
|
56 |
+
num_images_per_prompt=1,
|
57 |
+
negative_prompt=negative_prompt,
|
58 |
+
map=map,
|
59 |
+
num_inference_steps=100, denoising_start=0.8).images[0]
|
60 |
+
|
61 |
+
# Despite we use here both of the refiner and the base models,
|
62 |
+
# one can use only the base model, or only the refiner (for low strengths).
|
63 |
+
|
64 |
+
edited_images.save("output.png")
|
65 |
+
|
66 |
+
print("Done!")
|
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms
|
4 |
+
from SDXL.diff_pipe import StableDiffusionXLDiffImg2ImgPipeline
|
5 |
+
from diffusers import DPMSolverMultistepScheduler
|
6 |
+
|
7 |
+
NUM_INFERENCE_STEPS = 50
|
8 |
+
device = "cuda"
|
9 |
+
|
10 |
+
base = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
11 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
12 |
+
).to(device)
|
13 |
+
|
14 |
+
refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained(
|
15 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
16 |
+
text_encoder_2=base.text_encoder_2,
|
17 |
+
vae=base.vae,
|
18 |
+
torch_dtype=torch.float16,
|
19 |
+
use_safetensors=True,
|
20 |
+
variant="fp16",
|
21 |
+
).to(device)
|
22 |
+
|
23 |
+
base.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
|
24 |
+
refiner.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config)
|
25 |
+
|
26 |
+
|
27 |
+
def preprocess_image(image):
|
28 |
+
image = image.convert("RGB")
|
29 |
+
image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
|
30 |
+
image = transforms.ToTensor()(image)
|
31 |
+
image = image * 2 - 1
|
32 |
+
image = image.unsqueeze(0).to(device)
|
33 |
+
return image
|
34 |
+
|
35 |
+
|
36 |
+
def preprocess_map(map):
|
37 |
+
map = map.convert("L")
|
38 |
+
map = transforms.CenterCrop((map.size[1] // 64 * 64, map.size[0] // 64 * 64))(map)
|
39 |
+
# convert to tensor
|
40 |
+
map = transforms.ToTensor()(map)
|
41 |
+
map = map.to(device)
|
42 |
+
return map
|
43 |
+
|
44 |
+
|
45 |
+
def inference(image, map,gs, prompt, negative_prompt):
|
46 |
+
validate_inputs(image, map)
|
47 |
+
image = preprocess_image(image)
|
48 |
+
map = preprocess_map(map)
|
49 |
+
edited_images = base(prompt=prompt, original_image=image, image=image, strength=1, guidance_scale=gs,
|
50 |
+
num_images_per_prompt=1,
|
51 |
+
negative_prompt=negative_prompt,
|
52 |
+
map=map,
|
53 |
+
num_inference_steps=NUM_INFERENCE_STEPS, denoising_end=0.8, output_type="latent").images
|
54 |
+
|
55 |
+
edited_images = refiner(prompt=prompt, original_image=image, image=edited_images, strength=1, guidance_scale=7.5,
|
56 |
+
num_images_per_prompt=1,
|
57 |
+
negative_prompt=negative_prompt,
|
58 |
+
map=map,
|
59 |
+
num_inference_steps=NUM_INFERENCE_STEPS, denoising_start=0.8).images[0]
|
60 |
+
return edited_images
|
61 |
+
|
62 |
+
|
63 |
+
def validate_inputs(image, map):
|
64 |
+
if image is None:
|
65 |
+
raise gr.Error("Missing image")
|
66 |
+
if map is None:
|
67 |
+
raise gr.Error("Missing map")
|
68 |
+
|
69 |
+
|
70 |
+
example1 = ["assets/input2.jpg", "assets/map2.jpg", 17.5,
|
71 |
+
"Tree of life under the sea, ethereal, glittering, lens flares, cinematic lighting, artwork by Anna Dittmann & Carne Griffiths, 8k, unreal engine 5, hightly detailed, intricate detailed",
|
72 |
+
"bad anatomy, poorly drawn face, out of frame, gibberish, lowres, duplicate, morbid, darkness, maniacal, creepy, fused, blurry background, crosseyed, extra limbs, mutilated, dehydrated, surprised, poor quality, uneven, off-centered, bird illustration, painting, cartoons"]
|
73 |
+
example2=["assets/input3.jpg", "assets/map4.png", 21,
|
74 |
+
"overgrown atrium, nature, ancient black marble columns and terracotta tile floors, waterfall, ultra-high quality, octane render, corona render, UHD, 64k",
|
75 |
+
"Two bodies, Two heads, doll, extra nipples, bad anatomy, blurry, fuzzy, extra arms, extra fingers, poorly drawn hands, disfigured, tiling, deformed, mutated, out of frame, cloned face, watermark, text, lowres, disfigured, ostentatious, ugly, oversaturated, grain, low resolution, blurry, bad anatomy, poorly drawn face, mutant, mutated, blurred, out of focus, long neck, long body, ugly, disgusting, bad drawing, childish"]
|
76 |
+
demo = gr.Interface(inference, [gr.Image(label="input image", type="pil"), gr.Image(label="change map", type="pil"),
|
77 |
+
gr.Slider(0,28,value=7.5,label="Guidance Scale"),
|
78 |
+
gr.Textbox(label="Prompt"), gr.Textbox(label="Negative Prompt")], "image",
|
79 |
+
allow_flagging="never", examples=[example1,example2])
|
80 |
+
if __name__ == "__main__":
|
81 |
+
demo.launch()
|
readme.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Differential Diffusion: Giving Each Pixel its strength
|
2 |
+
> Eran Levin, Ohad Fried
|
3 |
+
> Tel Aviv University, Reichman University
|
4 |
+
> Diffusion models have revolutionized image generation and editing, producing state-of-the-art results in conditioned and unconditioned image synthesis. While current techniques enable user control over the degree of change in an image edit, the controllability is limited to global changes over an entire edited region. This paper introduces a novel framework that enables customization of the amount of change <i>per pixel</i> or <i>per image region</i>. Our framework can be integrated into any existing diffusion model, enhancing it with this capability. Such granular control on the quantity of change opens up a diverse array of new editing capabilities, such as control of the extent to which individual objects are modified, or the ability to introduce gradual spatial changes. Furthermore, we showcase the framework's effectiveness in soft-inpainting---the completion of portions of an image while subtly adjusting the surrounding areas to ensure seamless integration. Additionally, we introduce a new tool for exploring the effects of different change quantities. Our framework operates solely during inference, requiring no model training or fine-tuning. We demonstrate our method with the current open state-of-the-art models, and validate it via both quantitative and qualitative comparisons, and a user study.
|
5 |
+
|
6 |
+
<a href="https://arxiv.org/abs/2306.00950"><img src="https://img.shields.io/badge/arXiv-2306.00950-b31b1b?style=flat&logo=arxiv&logoColor=red"/></a>
|
7 |
+
<a href="https://differential-diffusion.github.io/"><img src="https://img.shields.io/static/v1?label=Project&message=Website&color=red" height=20.5></a>
|
8 |
+
<br/>
|
9 |
+
<img src="assets/teaser.png" width="800px"/>
|
10 |
+
## Table of Contents
|
11 |
+
|
12 |
+
- [Requirements](#requirements)
|
13 |
+
- [Installation](#installation)
|
14 |
+
- [Usage](#usage)
|
15 |
+
|
16 |
+
|
17 |
+
## Requirements
|
18 |
+
|
19 |
+
- Python (version 3.9)
|
20 |
+
- GPU (NVIDIA CUDA compatible)
|
21 |
+
- [Virtualenv](https://virtualenv.pypa.io/) (optional but recommended)
|
22 |
+
|
23 |
+
## Installation
|
24 |
+
|
25 |
+
- Create a virtual environment (optional but recommended):
|
26 |
+
|
27 |
+
```bash
|
28 |
+
python -m venv venv
|
29 |
+
```
|
30 |
+
|
31 |
+
Activate the virtual environment:
|
32 |
+
|
33 |
+
On Windows:
|
34 |
+
|
35 |
+
```bash
|
36 |
+
venv\Scripts\activate
|
37 |
+
```
|
38 |
+
|
39 |
+
On Unix or MacOS:
|
40 |
+
|
41 |
+
```bash
|
42 |
+
source venv/bin/activate
|
43 |
+
```
|
44 |
+
|
45 |
+
- Install the required dependencies:
|
46 |
+
|
47 |
+
```bash
|
48 |
+
pip install -r requirements.txt
|
49 |
+
```
|
50 |
+
|
51 |
+
## Usage
|
52 |
+
- Ensure that your virtual environment is activated.
|
53 |
+
- Make sure that your GPU is properly set up and accessible.
|
54 |
+
- For Stable Diffusion 2.1:
|
55 |
+
- Run the script:
|
56 |
+
|
57 |
+
```bash
|
58 |
+
python SD2/run.py
|
59 |
+
```
|
60 |
+
- For Stable Diffusion XL:
|
61 |
+
- Run the script:
|
62 |
+
|
63 |
+
```bash
|
64 |
+
python SDXL/run.py
|
65 |
+
```
|
66 |
+
- For Kandinsky 2.2:
|
67 |
+
- Run the script:
|
68 |
+
|
69 |
+
```bash
|
70 |
+
python Kandinsky/run.py
|
71 |
+
```
|
72 |
+
|
73 |
+
- For DeepFloyd IF:
|
74 |
+
- Run the script:
|
75 |
+
|
76 |
+
```bash
|
77 |
+
python IF/run.py
|
78 |
+
```
|
79 |
+
|
80 |
+
## Citation
|
81 |
+
```bibtex
|
82 |
+
@misc{levin2023differential,
|
83 |
+
title={Differential Diffusion: Giving Each Pixel Its Strength},
|
84 |
+
author={Eran Levin and Ohad Fried},
|
85 |
+
year={2023},
|
86 |
+
eprint={2306.00950},
|
87 |
+
archivePrefix={arXiv},
|
88 |
+
primaryClass={cs.CV}
|
89 |
+
}
|
90 |
+
```
|
requirements.txt
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.24.1
|
2 |
+
aiofiles==23.2.1
|
3 |
+
altair==5.2.0
|
4 |
+
annotated-types==0.6.0
|
5 |
+
anyio==4.3.0
|
6 |
+
attrs==23.2.0
|
7 |
+
certifi==2023.11.17
|
8 |
+
charset-normalizer==3.3.2
|
9 |
+
click==8.1.7
|
10 |
+
colorama==0.4.6
|
11 |
+
contourpy==1.2.0
|
12 |
+
cycler==0.12.1
|
13 |
+
diffusers==0.19.3
|
14 |
+
exceptiongroup==1.2.0
|
15 |
+
fastapi==0.109.2
|
16 |
+
ffmpy==0.3.2
|
17 |
+
filelock==3.13.1
|
18 |
+
fonttools==4.49.0
|
19 |
+
fsspec==2023.10.0
|
20 |
+
gradio==4.19.1
|
21 |
+
gradio_client==0.10.0
|
22 |
+
h11==0.14.0
|
23 |
+
httpcore==1.0.3
|
24 |
+
httpx==0.26.0
|
25 |
+
huggingface-hub==0.19.4
|
26 |
+
idna==3.4
|
27 |
+
importlib-metadata==6.8.0
|
28 |
+
importlib-resources==6.1.1
|
29 |
+
Jinja2==3.1.2
|
30 |
+
jsonschema==4.21.1
|
31 |
+
jsonschema-specifications==2023.12.1
|
32 |
+
kiwisolver==1.4.5
|
33 |
+
markdown-it-py==3.0.0
|
34 |
+
MarkupSafe==2.1.3
|
35 |
+
matplotlib==3.8.3
|
36 |
+
mdurl==0.1.2
|
37 |
+
mpmath==1.3.0
|
38 |
+
networkx==3.2.1
|
39 |
+
numpy==1.26.2
|
40 |
+
nvidia-cublas-cu12==12.1.3.1
|
41 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
42 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
43 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
44 |
+
nvidia-cudnn-cu12==8.9.2.26
|
45 |
+
nvidia-cufft-cu12==11.0.2.54
|
46 |
+
nvidia-curand-cu12==10.3.2.106
|
47 |
+
nvidia-cusolver-cu12==11.4.5.107
|
48 |
+
nvidia-cusparse-cu12==12.1.0.106
|
49 |
+
nvidia-nccl-cu12==2.18.1
|
50 |
+
nvidia-nvjitlink-cu12==12.3.101
|
51 |
+
nvidia-nvtx-cu12==12.1.105
|
52 |
+
orjson==3.9.14
|
53 |
+
packaging==23.2
|
54 |
+
pandas==2.2.0
|
55 |
+
Pillow==10.1.0
|
56 |
+
psutil==5.9.6
|
57 |
+
pydantic==2.6.1
|
58 |
+
pydantic_core==2.16.2
|
59 |
+
pydub==0.25.1
|
60 |
+
Pygments==2.17.2
|
61 |
+
pyparsing==3.1.1
|
62 |
+
python-dateutil==2.8.2
|
63 |
+
python-multipart==0.0.9
|
64 |
+
pytz==2024.1
|
65 |
+
PyYAML==6.0.1
|
66 |
+
referencing==0.33.0
|
67 |
+
regex==2023.10.3
|
68 |
+
requests==2.31.0
|
69 |
+
rich==13.7.0
|
70 |
+
rpds-py==0.18.0
|
71 |
+
ruff==0.2.2
|
72 |
+
safetensors==0.4.0
|
73 |
+
semantic-version==2.10.0
|
74 |
+
sentencepiece==0.1.99
|
75 |
+
shellingham==1.5.4
|
76 |
+
six==1.16.0
|
77 |
+
sniffio==1.3.0
|
78 |
+
starlette==0.36.3
|
79 |
+
sympy==1.12
|
80 |
+
tokenizers==0.15.0
|
81 |
+
tomlkit==0.12.0
|
82 |
+
toolz==0.12.1
|
83 |
+
torch==2.1.1
|
84 |
+
torchvision==0.16.1
|
85 |
+
tqdm==4.66.1
|
86 |
+
transformers==4.35.2
|
87 |
+
triton==2.1.0
|
88 |
+
typer==0.9.0
|
89 |
+
typing_extensions==4.8.0
|
90 |
+
tzdata==2024.1
|
91 |
+
urllib3==2.1.0
|
92 |
+
uvicorn==0.27.1
|
93 |
+
websockets==11.0.3
|
94 |
+
zipp==3.17.0
|