import gradio as gr from huggingface_hub import InferenceClient from llama_cpp import Llama from llama_cpp.llama_chat_format import MoondreamChatHandler chat_handler = MoondreamChatHandler.from_pretrained( repo_id="vikhyatk/moondream2", filename="*mmproj*", ) llm = Llama.from_pretrained( repo_id="eybro/model2", filename="unsloth.Q4_K_M.gguf", chat_handler=chat_handler, n_ctx=2048, ) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") client = InferenceClient("eybro/model") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Simplified to handle only text input (no image input) messages = [{"role": "user", "content": message}] # Use llm to generate the response response = "" try: completion = llm.create_chat_completion( messages=messages, ) response = completion['choices'][0]['message']['content'] except Exception as e: response = f"Error: {e}" return response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()