Spaces:
Runtime error
Runtime error
File size: 12,758 Bytes
e276be2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import math
from contextlib import contextmanager
from typing import Any, Dict, List, Tuple, Union, Optional
from omegaconf import ListConfig, OmegaConf
from copy import deepcopy
import torch.nn.functional as F
from sat.helpers import print_rank0
import torch
from torch import nn
from sgm.modules import UNCONDITIONAL_CONFIG
from sgm.modules.autoencoding.temporal_ae import VideoDecoder
from sgm.modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
from sgm.util import (
default,
disabled_train,
get_obj_from_str,
instantiate_from_config,
log_txt_as_img,
)
import gc
from sat import mpu
import random
class SATVideoDiffusionEngine(nn.Module):
def __init__(self, args, **kwargs):
super().__init__()
model_config = args.model_config
# model args preprocess
log_keys = model_config.get("log_keys", None)
input_key = model_config.get("input_key", "mp4")
network_config = model_config.get("network_config", None)
network_wrapper = model_config.get("network_wrapper", None)
denoiser_config = model_config.get("denoiser_config", None)
sampler_config = model_config.get("sampler_config", None)
conditioner_config = model_config.get("conditioner_config", None)
first_stage_config = model_config.get("first_stage_config", None)
loss_fn_config = model_config.get("loss_fn_config", None)
scale_factor = model_config.get("scale_factor", 1.0)
latent_input = model_config.get("latent_input", False)
disable_first_stage_autocast = model_config.get("disable_first_stage_autocast", False)
no_cond_log = model_config.get("disable_first_stage_autocast", False)
not_trainable_prefixes = model_config.get("not_trainable_prefixes", ["first_stage_model", "conditioner"])
compile_model = model_config.get("compile_model", False)
en_and_decode_n_samples_a_time = model_config.get("en_and_decode_n_samples_a_time", None)
lr_scale = model_config.get("lr_scale", None)
lora_train = model_config.get("lora_train", False)
self.use_pd = model_config.get("use_pd", False) # progressive distillation
self.log_keys = log_keys
self.input_key = input_key
self.not_trainable_prefixes = not_trainable_prefixes
self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time
self.lr_scale = lr_scale
self.lora_train = lora_train
self.noised_image_input = model_config.get("noised_image_input", False)
self.noised_image_all_concat = model_config.get("noised_image_all_concat", False)
self.noised_image_dropout = model_config.get("noised_image_dropout", 0.0)
if args.fp16:
dtype = torch.float16
dtype_str = "fp16"
elif args.bf16:
dtype = torch.bfloat16
dtype_str = "bf16"
else:
dtype = torch.float32
dtype_str = "fp32"
self.dtype = dtype
self.dtype_str = dtype_str
network_config["params"]["dtype"] = dtype_str
model = instantiate_from_config(network_config)
self.model = get_obj_from_str(default(network_wrapper, OPENAIUNETWRAPPER))(
model, compile_model=compile_model, dtype=dtype
)
self.denoiser = instantiate_from_config(denoiser_config)
self.sampler = instantiate_from_config(sampler_config) if sampler_config is not None else None
self.conditioner = instantiate_from_config(default(conditioner_config, UNCONDITIONAL_CONFIG))
self._init_first_stage(first_stage_config)
self.loss_fn = instantiate_from_config(loss_fn_config) if loss_fn_config is not None else None
self.latent_input = latent_input
self.scale_factor = scale_factor
self.disable_first_stage_autocast = disable_first_stage_autocast
self.no_cond_log = no_cond_log
self.device = args.device
def disable_untrainable_params(self):
total_trainable = 0
for n, p in self.named_parameters():
if p.requires_grad == False:
continue
flag = False
for prefix in self.not_trainable_prefixes:
if n.startswith(prefix) or prefix == "all":
flag = True
break
lora_prefix = ["matrix_A", "matrix_B"]
for prefix in lora_prefix:
if prefix in n:
flag = False
break
if flag:
p.requires_grad_(False)
else:
total_trainable += p.numel()
print_rank0("***** Total trainable parameters: " + str(total_trainable) + " *****")
def reinit(self, parent_model=None):
# reload the initial params from previous trained modules
# you can also get access to other mixins through parent_model.get_mixin().
pass
def _init_first_stage(self, config):
model = instantiate_from_config(config).eval()
model.train = disabled_train
for param in model.parameters():
param.requires_grad = False
self.first_stage_model = model
def forward(self, x, batch):
loss = self.loss_fn(self.model, self.denoiser, self.conditioner, x, batch)
loss_mean = loss.mean()
loss_dict = {"loss": loss_mean}
return loss_mean, loss_dict
def shared_step(self, batch: Dict) -> Any:
x = self.get_input(batch)
if self.lr_scale is not None:
lr_x = F.interpolate(x, scale_factor=1 / self.lr_scale, mode="bilinear", align_corners=False)
lr_x = F.interpolate(lr_x, scale_factor=self.lr_scale, mode="bilinear", align_corners=False)
lr_z = self.encode_first_stage(lr_x, batch)
batch["lr_input"] = lr_z
x = x.permute(0, 2, 1, 3, 4).contiguous()
x = self.encode_first_stage(x, batch)
x = x.permute(0, 2, 1, 3, 4).contiguous()
gc.collect()
torch.cuda.empty_cache()
loss, loss_dict = self(x, batch)
return loss, loss_dict
def get_input(self, batch):
return batch[self.input_key].to(self.dtype)
@torch.no_grad()
def decode_first_stage(self, z):
z = 1.0 / self.scale_factor * z
n_samples = default(self.en_and_decode_n_samples_a_time, z.shape[0])
n_rounds = math.ceil(z.shape[0] / n_samples)
all_out = []
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
for n in range(n_rounds):
if isinstance(self.first_stage_model.decoder, VideoDecoder):
kwargs = {"timesteps": len(z[n * n_samples : (n + 1) * n_samples])}
else:
kwargs = {}
use_cp = False
out = self.first_stage_model.decode(z[n * n_samples : (n + 1) * n_samples], **kwargs)
all_out.append(out)
out = torch.cat(all_out, dim=0)
return out
@torch.no_grad()
def encode_first_stage(self, x, batch):
frame = x.shape[2]
if frame > 1 and self.latent_input:
x = x.permute(0, 2, 1, 3, 4).contiguous()
return x * self.scale_factor # already encoded
use_cp = False
n_samples = default(self.en_and_decode_n_samples_a_time, x.shape[0])
n_rounds = math.ceil(x.shape[0] / n_samples)
all_out = []
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
for n in range(n_rounds):
out = self.first_stage_model.encode(x[n * n_samples : (n + 1) * n_samples])
all_out.append(out)
z = torch.cat(all_out, dim=0)
z = self.scale_factor * z
return z
@torch.no_grad()
def sample(
self,
cond: Dict,
uc: Union[Dict, None] = None,
batch_size: int = 16,
shape: Union[None, Tuple, List] = None,
prefix=None,
concat_images=None,
**kwargs,
):
randn = torch.randn(batch_size, *shape).to(torch.float32).to(self.device)
if hasattr(self, "seeded_noise"):
randn = self.seeded_noise(randn)
if prefix is not None:
randn = torch.cat([prefix, randn[:, prefix.shape[1] :]], dim=1)
# broadcast noise
mp_size = mpu.get_model_parallel_world_size()
if mp_size > 1:
global_rank = torch.distributed.get_rank() // mp_size
src = global_rank * mp_size
torch.distributed.broadcast(randn, src=src, group=mpu.get_model_parallel_group())
scale = None
scale_emb = None
denoiser = lambda input, sigma, c, **addtional_model_inputs: self.denoiser(
self.model, input, sigma, c, concat_images=concat_images, **addtional_model_inputs
)
samples = self.sampler(denoiser, randn, cond, uc=uc, scale=scale, scale_emb=scale_emb)
samples = samples.to(self.dtype)
return samples
@torch.no_grad()
def log_conditionings(self, batch: Dict, n: int) -> Dict:
"""
Defines heuristics to log different conditionings.
These can be lists of strings (text-to-image), tensors, ints, ...
"""
image_h, image_w = batch[self.input_key].shape[3:]
log = dict()
for embedder in self.conditioner.embedders:
if ((self.log_keys is None) or (embedder.input_key in self.log_keys)) and not self.no_cond_log:
x = batch[embedder.input_key][:n]
if isinstance(x, torch.Tensor):
if x.dim() == 1:
# class-conditional, convert integer to string
x = [str(x[i].item()) for i in range(x.shape[0])]
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 4)
elif x.dim() == 2:
# size and crop cond and the like
x = ["x".join([str(xx) for xx in x[i].tolist()]) for i in range(x.shape[0])]
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20)
else:
raise NotImplementedError()
elif isinstance(x, (List, ListConfig)):
if isinstance(x[0], str):
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20)
else:
raise NotImplementedError()
else:
raise NotImplementedError()
log[embedder.input_key] = xc
return log
@torch.no_grad()
def log_video(
self,
batch: Dict,
N: int = 8,
ucg_keys: List[str] = None,
only_log_video_latents=False,
**kwargs,
) -> Dict:
conditioner_input_keys = [e.input_key for e in self.conditioner.embedders]
if ucg_keys:
assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), (
"Each defined ucg key for sampling must be in the provided conditioner input keys,"
f"but we have {ucg_keys} vs. {conditioner_input_keys}"
)
else:
ucg_keys = conditioner_input_keys
log = dict()
x = self.get_input(batch)
c, uc = self.conditioner.get_unconditional_conditioning(
batch,
force_uc_zero_embeddings=ucg_keys if len(self.conditioner.embedders) > 0 else [],
)
sampling_kwargs = {}
N = min(x.shape[0], N)
x = x.to(self.device)[:N]
if not self.latent_input:
log["inputs"] = x.to(torch.float32)
x = x.permute(0, 2, 1, 3, 4).contiguous()
z = self.encode_first_stage(x, batch)
if not only_log_video_latents:
log["reconstructions"] = self.decode_first_stage(z).to(torch.float32)
log["reconstructions"] = log["reconstructions"].permute(0, 2, 1, 3, 4).contiguous()
z = z.permute(0, 2, 1, 3, 4).contiguous()
log.update(self.log_conditionings(batch, N))
for k in c:
if isinstance(c[k], torch.Tensor):
c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc))
samples = self.sample(c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs) # b t c h w
samples = samples.permute(0, 2, 1, 3, 4).contiguous()
if only_log_video_latents:
latents = 1.0 / self.scale_factor * samples
log["latents"] = latents
else:
samples = self.decode_first_stage(samples).to(torch.float32)
samples = samples.permute(0, 2, 1, 3, 4).contiguous()
log["samples"] = samples
return log
|