eysho's picture
Upload folder using huggingface_hub
e276be2 verified
raw
history blame
13.1 kB
import functools
import importlib
import os
from functools import partial
from inspect import isfunction
import fsspec
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from safetensors.torch import load_file as load_safetensors
import torch.distributed
_CONTEXT_PARALLEL_GROUP = None
_CONTEXT_PARALLEL_SIZE = None
def is_context_parallel_initialized():
if _CONTEXT_PARALLEL_GROUP is None:
return False
else:
return True
def initialize_context_parallel(context_parallel_size):
global _CONTEXT_PARALLEL_GROUP
global _CONTEXT_PARALLEL_SIZE
assert _CONTEXT_PARALLEL_GROUP is None, "context parallel group is already initialized"
_CONTEXT_PARALLEL_SIZE = context_parallel_size
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
for i in range(0, world_size, context_parallel_size):
ranks = range(i, i + context_parallel_size)
group = torch.distributed.new_group(ranks)
if rank in ranks:
_CONTEXT_PARALLEL_GROUP = group
break
def get_context_parallel_group():
assert _CONTEXT_PARALLEL_GROUP is not None, "context parallel group is not initialized"
return _CONTEXT_PARALLEL_GROUP
def get_context_parallel_world_size():
assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"
return _CONTEXT_PARALLEL_SIZE
def get_context_parallel_rank():
assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"
rank = torch.distributed.get_rank()
cp_rank = rank % _CONTEXT_PARALLEL_SIZE
return cp_rank
def get_context_parallel_group_rank():
assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"
rank = torch.distributed.get_rank()
cp_group_rank = rank // _CONTEXT_PARALLEL_SIZE
return cp_group_rank
class SafeConv3d(torch.nn.Conv3d):
def forward(self, input):
memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024**3
if memory_count > 2:
kernel_size = self.kernel_size[0]
part_num = int(memory_count / 2) + 1
input_chunks = torch.chunk(input, part_num, dim=2) # NCTHW
if kernel_size > 1:
input_chunks = [input_chunks[0]] + [
torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2)
for i in range(1, len(input_chunks))
]
output_chunks = []
for input_chunk in input_chunks:
output_chunks.append(super(SafeConv3d, self).forward(input_chunk))
output = torch.cat(output_chunks, dim=2)
return output
else:
return super(SafeConv3d, self).forward(input)
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def get_string_from_tuple(s):
try:
# Check if the string starts and ends with parentheses
if s[0] == "(" and s[-1] == ")":
# Convert the string to a tuple
t = eval(s)
# Check if the type of t is tuple
if type(t) == tuple:
return t[0]
else:
pass
except:
pass
return s
def is_power_of_two(n):
"""
chat.openai.com/chat
Return True if n is a power of 2, otherwise return False.
The function is_power_of_two takes an integer n as input and returns True if n is a power of 2, otherwise it returns False.
The function works by first checking if n is less than or equal to 0. If n is less than or equal to 0, it can't be a power of 2, so the function returns False.
If n is greater than 0, the function checks whether n is a power of 2 by using a bitwise AND operation between n and n-1. If n is a power of 2, then it will have only one bit set to 1 in its binary representation. When we subtract 1 from a power of 2, all the bits to the right of that bit become 1, and the bit itself becomes 0. So, when we perform a bitwise AND between n and n-1, we get 0 if n is a power of 2, and a non-zero value otherwise.
Thus, if the result of the bitwise AND operation is 0, then n is a power of 2 and the function returns True. Otherwise, the function returns False.
"""
if n <= 0:
return False
return (n & (n - 1)) == 0
def autocast(f, enabled=True):
def do_autocast(*args, **kwargs):
with torch.cuda.amp.autocast(
enabled=enabled,
dtype=torch.get_autocast_gpu_dtype(),
cache_enabled=torch.is_autocast_cache_enabled(),
):
return f(*args, **kwargs)
return do_autocast
def load_partial_from_config(config):
return partial(get_obj_from_str(config["target"]), **config.get("params", dict()))
def log_txt_as_img(wh, xc, size=10):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = list()
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
font = ImageFont.truetype("data/DejaVuSans.ttf", size=size)
nc = int(40 * (wh[0] / 256))
if isinstance(xc[bi], list):
text_seq = xc[bi][0]
else:
text_seq = xc[bi]
lines = "\n".join(text_seq[start : start + nc] for start in range(0, len(text_seq), nc))
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def partialclass(cls, *args, **kwargs):
class NewCls(cls):
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
return NewCls
def make_path_absolute(path):
fs, p = fsspec.core.url_to_fs(path)
if fs.protocol == "file":
return os.path.abspath(p)
return path
def ismap(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] > 3)
def isimage(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
def isheatmap(x):
if not isinstance(x, torch.Tensor):
return False
return x.ndim == 2
def isneighbors(x):
if not isinstance(x, torch.Tensor):
return False
return x.ndim == 5 and (x.shape[2] == 3 or x.shape[2] == 1)
def exists(x):
return x is not None
def expand_dims_like(x, y):
while x.dim() != y.dim():
x = x.unsqueeze(-1)
return x
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def mean_flat(tensor):
"""
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
return total_params
def instantiate_from_config(config):
if not "target" in config:
if config == "__is_first_stage__":
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_obj_from_str(string, reload=False, invalidate_cache=True):
module, cls = string.rsplit(".", 1)
if invalidate_cache:
importlib.invalidate_caches()
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
def load_model_from_config(config, ckpt, verbose=True, freeze=True):
print(f"Loading model from {ckpt}")
if ckpt.endswith("ckpt"):
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
elif ckpt.endswith("safetensors"):
sd = load_safetensors(ckpt)
else:
raise NotImplementedError
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
if freeze:
for param in model.parameters():
param.requires_grad = False
model.eval()
return model
def get_configs_path() -> str:
"""
Get the `configs` directory.
For a working copy, this is the one in the root of the repository,
but for an installed copy, it's in the `sgm` package (see pyproject.toml).
"""
this_dir = os.path.dirname(__file__)
candidates = (
os.path.join(this_dir, "configs"),
os.path.join(this_dir, "..", "configs"),
)
for candidate in candidates:
candidate = os.path.abspath(candidate)
if os.path.isdir(candidate):
return candidate
raise FileNotFoundError(f"Could not find SGM configs in {candidates}")
def get_nested_attribute(obj, attribute_path, depth=None, return_key=False):
"""
Will return the result of a recursive get attribute call.
E.g.:
a.b.c
= getattr(getattr(a, "b"), "c")
= get_nested_attribute(a, "b.c")
If any part of the attribute call is an integer x with current obj a, will
try to call a[x] instead of a.x first.
"""
attributes = attribute_path.split(".")
if depth is not None and depth > 0:
attributes = attributes[:depth]
assert len(attributes) > 0, "At least one attribute should be selected"
current_attribute = obj
current_key = None
for level, attribute in enumerate(attributes):
current_key = ".".join(attributes[: level + 1])
try:
id_ = int(attribute)
current_attribute = current_attribute[id_]
except ValueError:
current_attribute = getattr(current_attribute, attribute)
return (current_attribute, current_key) if return_key else current_attribute
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs)
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_tensors = list(args[:length])
ctx.input_params = list(args[length:])
ctx.gpu_autocast_kwargs = {
"enabled": torch.is_autocast_enabled(),
"dtype": torch.get_autocast_gpu_dtype(),
"cache_enabled": torch.is_autocast_cache_enabled(),
}
with torch.no_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
return output_tensors
@staticmethod
def backward(ctx, *output_grads):
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
# Fixes a bug where the first op in run_function modifies the
# Tensor storage in place, which is not allowed for detach()'d
# Tensors.
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
output_tensors = ctx.run_function(*shallow_copies)
input_grads = torch.autograd.grad(
output_tensors,
ctx.input_tensors + ctx.input_params,
output_grads,
allow_unused=True,
)
del ctx.input_tensors
del ctx.input_params
del output_tensors
return (None, None) + input_grads