CogVideo / inference /cli_demo.py
eysho's picture
Upload folder using huggingface_hub
e276be2 verified
"""
This script demonstrates how to generate a video from a text prompt using CogVideoX with 🤗Huggingface Diffusers Pipeline.
Note:
This script requires the `diffusers>=0.30.0` library to be installed.
If the video exported using OpenCV appears “completely green” and cannot be viewed, lease switch to a different player to watch it. This is a normal phenomenon.
Run the script:
$ python cli_demo.py --prompt "A girl ridding a bike." --model_path THUDM/CogVideoX-2b
"""
import argparse
import tempfile
from typing import Union, List
import PIL
import imageio
import numpy as np
import torch
from diffusers import CogVideoXPipeline
def export_to_video_imageio(
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
) -> str:
"""
Export the video frames to a video file using imageio lib to Avoid "green screen" issue (for example CogVideoX)
"""
if output_video_path is None:
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
if isinstance(video_frames[0], PIL.Image.Image):
video_frames = [np.array(frame) for frame in video_frames]
with imageio.get_writer(output_video_path, fps=fps) as writer:
for frame in video_frames:
writer.append_data(frame)
return output_video_path
def generate_video(
prompt: str,
model_path: str,
output_path: str = "./output.mp4",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
device: str = "cuda",
dtype: torch.dtype = torch.float16,
):
"""
Generates a video based on the given prompt and saves it to the specified path.
Parameters:
- prompt (str): The description of the video to be generated.
- model_path (str): The path of the pre-trained model to be used.
- output_path (str): The path where the generated video will be saved.
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- device (str): The device to use for computation (e.g., "cuda" or "cpu").
- dtype (torch.dtype): The data type for computation (default is torch.float16).
"""
# Load the pre-trained CogVideoX pipeline with the specified precision (float16) and move it to the specified device
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device)
# Encode the prompt to get the prompt embeddings
prompt_embeds, _ = pipe.encode_prompt(
prompt=prompt, # The textual description for video generation
negative_prompt=None, # The negative prompt to guide the video generation
do_classifier_free_guidance=True, # Whether to use classifier-free guidance
num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt
max_sequence_length=226, # Maximum length of the sequence, must be 226
device=device, # Device to use for computation
dtype=dtype, # Data type for computation
)
# Generate the video frames using the pipeline
video = pipe(
num_inference_steps=num_inference_steps, # Number of inference steps
guidance_scale=guidance_scale, # Guidance scale for classifier-free guidance
prompt_embeds=prompt_embeds, # Encoded prompt embeddings
negative_prompt_embeds=torch.zeros_like(prompt_embeds), # Not Supported negative prompt
).frames[0]
# Export the generated frames to a video file. fps must be 8
export_to_video_imageio(video, output_path, fps=8)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
parser.add_argument(
"--model_path", type=str, default="THUDM/CogVideoX-2b", help="The path of the pre-trained model to be used"
)
parser.add_argument(
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
)
parser.add_argument(
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
)
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
parser.add_argument(
"--device", type=str, default="cuda", help="The device to use for computation (e.g., 'cuda' or 'cpu')"
)
parser.add_argument(
"--dtype", type=str, default="float16", help="The data type for computation (e.g., 'float16' or 'float32')"
)
args = parser.parse_args()
# Convert dtype argument to torch.dtype, NOT suggest BF16.
dtype = torch.float16 if args.dtype == "float16" else torch.float32
# main function to generate video.
generate_video(
prompt=args.prompt,
model_path=args.model_path,
output_path=args.output_path,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
num_videos_per_prompt=args.num_videos_per_prompt,
device=args.device,
dtype=dtype,
)