Spaces:
Runtime error
Runtime error
""" | |
This script demonstrates how to generate a video from a text prompt using CogVideoX with 🤗Huggingface Diffusers Pipeline. | |
Note: | |
This script requires the `diffusers>=0.30.0` library to be installed. | |
If the video exported using OpenCV appears “completely green” and cannot be viewed, lease switch to a different player to watch it. This is a normal phenomenon. | |
Run the script: | |
$ python cli_demo.py --prompt "A girl ridding a bike." --model_path THUDM/CogVideoX-2b | |
""" | |
import argparse | |
import tempfile | |
from typing import Union, List | |
import PIL | |
import imageio | |
import numpy as np | |
import torch | |
from diffusers import CogVideoXPipeline | |
def export_to_video_imageio( | |
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8 | |
) -> str: | |
""" | |
Export the video frames to a video file using imageio lib to Avoid "green screen" issue (for example CogVideoX) | |
""" | |
if output_video_path is None: | |
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name | |
if isinstance(video_frames[0], PIL.Image.Image): | |
video_frames = [np.array(frame) for frame in video_frames] | |
with imageio.get_writer(output_video_path, fps=fps) as writer: | |
for frame in video_frames: | |
writer.append_data(frame) | |
return output_video_path | |
def generate_video( | |
prompt: str, | |
model_path: str, | |
output_path: str = "./output.mp4", | |
num_inference_steps: int = 50, | |
guidance_scale: float = 6.0, | |
num_videos_per_prompt: int = 1, | |
device: str = "cuda", | |
dtype: torch.dtype = torch.float16, | |
): | |
""" | |
Generates a video based on the given prompt and saves it to the specified path. | |
Parameters: | |
- prompt (str): The description of the video to be generated. | |
- model_path (str): The path of the pre-trained model to be used. | |
- output_path (str): The path where the generated video will be saved. | |
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality. | |
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt. | |
- num_videos_per_prompt (int): Number of videos to generate per prompt. | |
- device (str): The device to use for computation (e.g., "cuda" or "cpu"). | |
- dtype (torch.dtype): The data type for computation (default is torch.float16). | |
""" | |
# Load the pre-trained CogVideoX pipeline with the specified precision (float16) and move it to the specified device | |
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device) | |
# Encode the prompt to get the prompt embeddings | |
prompt_embeds, _ = pipe.encode_prompt( | |
prompt=prompt, # The textual description for video generation | |
negative_prompt=None, # The negative prompt to guide the video generation | |
do_classifier_free_guidance=True, # Whether to use classifier-free guidance | |
num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt | |
max_sequence_length=226, # Maximum length of the sequence, must be 226 | |
device=device, # Device to use for computation | |
dtype=dtype, # Data type for computation | |
) | |
# Generate the video frames using the pipeline | |
video = pipe( | |
num_inference_steps=num_inference_steps, # Number of inference steps | |
guidance_scale=guidance_scale, # Guidance scale for classifier-free guidance | |
prompt_embeds=prompt_embeds, # Encoded prompt embeddings | |
negative_prompt_embeds=torch.zeros_like(prompt_embeds), # Not Supported negative prompt | |
).frames[0] | |
# Export the generated frames to a video file. fps must be 8 | |
export_to_video_imageio(video, output_path, fps=8) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX") | |
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated") | |
parser.add_argument( | |
"--model_path", type=str, default="THUDM/CogVideoX-2b", help="The path of the pre-trained model to be used" | |
) | |
parser.add_argument( | |
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved" | |
) | |
parser.add_argument( | |
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process" | |
) | |
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance") | |
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt") | |
parser.add_argument( | |
"--device", type=str, default="cuda", help="The device to use for computation (e.g., 'cuda' or 'cpu')" | |
) | |
parser.add_argument( | |
"--dtype", type=str, default="float16", help="The data type for computation (e.g., 'float16' or 'float32')" | |
) | |
args = parser.parse_args() | |
# Convert dtype argument to torch.dtype, NOT suggest BF16. | |
dtype = torch.float16 if args.dtype == "float16" else torch.float32 | |
# main function to generate video. | |
generate_video( | |
prompt=args.prompt, | |
model_path=args.model_path, | |
output_path=args.output_path, | |
num_inference_steps=args.num_inference_steps, | |
guidance_scale=args.guidance_scale, | |
num_videos_per_prompt=args.num_videos_per_prompt, | |
device=args.device, | |
dtype=dtype, | |
) | |