CogVideo / sat /train_video.py
eysho's picture
Upload folder using huggingface_hub
e276be2 verified
import os
import argparse
from functools import partial
from PIL import Image
import numpy as np
import torch.distributed
import torchvision
from omegaconf import OmegaConf
import imageio
import torch
from sat import mpu
from sat.training.deepspeed_training import training_main
from sgm.util import get_obj_from_str, isheatmap, exists
from diffusion_video import SATVideoDiffusionEngine
from arguments import get_args, process_config_to_args
from einops import rearrange, repeat
try:
import wandb
except ImportError:
print("warning: wandb not installed")
def print_debug(args, s):
if args.debug:
s = f"RANK:[{torch.distributed.get_rank()}]:" + s
print(s)
def save_texts(texts, save_dir, iterations):
output_path = os.path.join(save_dir, f"{str(iterations).zfill(8)}")
with open(output_path, "w", encoding="utf-8") as f:
for text in texts:
f.write(text + "\n")
def save_video_as_grid_and_mp4(video_batch: torch.Tensor, save_path: str, T: int, fps: int = 5, args=None, key=None):
os.makedirs(save_path, exist_ok=True)
for i, vid in enumerate(video_batch):
gif_frames = []
for frame in vid:
frame = rearrange(frame, "c h w -> h w c")
frame = (255.0 * frame).cpu().numpy().astype(np.uint8)
gif_frames.append(frame)
now_save_path = os.path.join(save_path, f"{i:06d}.mp4")
with imageio.get_writer(now_save_path, fps=fps) as writer:
for frame in gif_frames:
writer.append_data(frame)
if args is not None and args.wandb:
wandb.log(
{key + f"_video_{i}": wandb.Video(now_save_path, fps=fps, format="mp4")}, step=args.iteration + 1
)
def log_video(batch, model, args, only_log_video_latents=False):
texts = batch["txt"]
text_save_dir = os.path.join(args.save, "video_texts")
os.makedirs(text_save_dir, exist_ok=True)
save_texts(texts, text_save_dir, args.iteration)
gpu_autocast_kwargs = {
"enabled": torch.is_autocast_enabled(),
"dtype": torch.get_autocast_gpu_dtype(),
"cache_enabled": torch.is_autocast_cache_enabled(),
}
with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
videos = model.log_video(batch, only_log_video_latents=only_log_video_latents)
if torch.distributed.get_rank() == 0:
root = os.path.join(args.save, "video")
if only_log_video_latents:
root = os.path.join(root, "latents")
filename = "{}_gs-{:06}".format("latents", args.iteration)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
os.makedirs(path, exist_ok=True)
torch.save(videos["latents"], os.path.join(path, "latent.pt"))
else:
for k in videos:
N = videos[k].shape[0]
if not isheatmap(videos[k]):
videos[k] = videos[k][:N]
if isinstance(videos[k], torch.Tensor):
videos[k] = videos[k].detach().float().cpu()
if not isheatmap(videos[k]):
videos[k] = torch.clamp(videos[k], -1.0, 1.0)
num_frames = batch["num_frames"][0]
fps = batch["fps"][0].cpu().item()
if only_log_video_latents:
root = os.path.join(root, "latents")
filename = "{}_gs-{:06}".format("latents", args.iteration)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
os.makedirs(path, exist_ok=True)
torch.save(videos["latents"], os.path.join(path, "latents.pt"))
else:
for k in videos:
samples = (videos[k] + 1.0) / 2.0
filename = "{}_gs-{:06}".format(k, args.iteration)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
save_video_as_grid_and_mp4(samples, path, num_frames // fps, fps, args, k)
def broad_cast_batch(batch):
mp_size = mpu.get_model_parallel_world_size()
global_rank = torch.distributed.get_rank() // mp_size
src = global_rank * mp_size
if batch["mp4"] is not None:
broadcast_shape = [batch["mp4"].shape, batch["fps"].shape, batch["num_frames"].shape]
else:
broadcast_shape = None
txt = [batch["txt"], broadcast_shape]
torch.distributed.broadcast_object_list(txt, src=src, group=mpu.get_model_parallel_group())
batch["txt"] = txt[0]
mp4_shape = txt[1][0]
fps_shape = txt[1][1]
num_frames_shape = txt[1][2]
if mpu.get_model_parallel_rank() != 0:
batch["mp4"] = torch.zeros(mp4_shape, device="cuda")
batch["fps"] = torch.zeros(fps_shape, device="cuda", dtype=torch.long)
batch["num_frames"] = torch.zeros(num_frames_shape, device="cuda", dtype=torch.long)
torch.distributed.broadcast(batch["mp4"], src=src, group=mpu.get_model_parallel_group())
torch.distributed.broadcast(batch["fps"], src=src, group=mpu.get_model_parallel_group())
torch.distributed.broadcast(batch["num_frames"], src=src, group=mpu.get_model_parallel_group())
return batch
def forward_step_eval(data_iterator, model, args, timers, only_log_video_latents=False, data_class=None):
if mpu.get_model_parallel_rank() == 0:
timers("data loader").start()
batch_video = next(data_iterator)
timers("data loader").stop()
if len(batch_video["mp4"].shape) == 6:
b, v = batch_video["mp4"].shape[:2]
batch_video["mp4"] = batch_video["mp4"].view(-1, *batch_video["mp4"].shape[2:])
txt = []
for i in range(b):
for j in range(v):
txt.append(batch_video["txt"][j][i])
batch_video["txt"] = txt
for key in batch_video:
if isinstance(batch_video[key], torch.Tensor):
batch_video[key] = batch_video[key].cuda()
else:
batch_video = {"mp4": None, "fps": None, "num_frames": None, "txt": None}
broad_cast_batch(batch_video)
if mpu.get_data_parallel_rank() == 0:
log_video(batch_video, model, args, only_log_video_latents=only_log_video_latents)
batch_video["global_step"] = args.iteration
loss, loss_dict = model.shared_step(batch_video)
for k in loss_dict:
if loss_dict[k].dtype == torch.bfloat16:
loss_dict[k] = loss_dict[k].to(torch.float32)
return loss, loss_dict
def forward_step(data_iterator, model, args, timers, data_class=None):
if mpu.get_model_parallel_rank() == 0:
timers("data loader").start()
batch = next(data_iterator)
timers("data loader").stop()
for key in batch:
if isinstance(batch[key], torch.Tensor):
batch[key] = batch[key].cuda()
if torch.distributed.get_rank() == 0:
if not os.path.exists(os.path.join(args.save, "training_config.yaml")):
configs = [OmegaConf.load(cfg) for cfg in args.base]
config = OmegaConf.merge(*configs)
os.makedirs(args.save, exist_ok=True)
OmegaConf.save(config=config, f=os.path.join(args.save, "training_config.yaml"))
else:
batch = {"mp4": None, "fps": None, "num_frames": None, "txt": None}
batch["global_step"] = args.iteration
broad_cast_batch(batch)
loss, loss_dict = model.shared_step(batch)
return loss, loss_dict
if __name__ == "__main__":
if "OMPI_COMM_WORLD_LOCAL_RANK" in os.environ:
os.environ["LOCAL_RANK"] = os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]
os.environ["WORLD_SIZE"] = os.environ["OMPI_COMM_WORLD_SIZE"]
os.environ["RANK"] = os.environ["OMPI_COMM_WORLD_RANK"]
py_parser = argparse.ArgumentParser(add_help=False)
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
data_class = get_obj_from_str(args.data_config["target"])
create_dataset_function = partial(data_class.create_dataset_function, **args.data_config["params"])
import yaml
configs = []
for config in args.base:
with open(config, "r") as f:
base_config = yaml.safe_load(f)
configs.append(base_config)
args.log_config = configs
training_main(
args,
model_cls=SATVideoDiffusionEngine,
forward_step_function=partial(forward_step, data_class=data_class),
forward_step_eval=partial(
forward_step_eval, data_class=data_class, only_log_video_latents=args.only_log_video_latents
),
create_dataset_function=create_dataset_function,
)