Spaces:
Running
Running
Fabio Grasso
commited on
Commit
·
b1fdcc2
1
Parent(s):
1f7facb
init moseca
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Dockerfile +20 -9
- README.md +191 -18
- app.py +0 -3
- app/_fastapi_server.py +20 -0
- app/examples.py +0 -58
- app/footer.py +118 -0
- app/header.py +68 -0
- app/helpers.py +153 -12
- app/main.py +0 -155
- app/pages/About.py +154 -0
- app/pages/Karaoke.py +176 -0
- app/pages/Separate.py +203 -0
- {lib → app/service}/__init__.py +0 -0
- app/{demucs_runner.py → service/demucs_runner.py} +26 -8
- app/service/vocal_remover/__init__.py +0 -0
- app/service/vocal_remover/layers.py +126 -0
- app/service/vocal_remover/nets.py +125 -0
- app/service/vocal_remover/runner.py +234 -0
- app/service/youtube.py +72 -0
- app/sidebar.py +0 -12
- app/style.py +131 -0
- img/bmc-button.png +0 -0
- img/image_stems.png +0 -0
- img/karaoke_fun.png +0 -0
- img/logo_moseca.png +0 -0
- img/state-of-art.png +0 -0
- lib/st_audiorec/.DS_Store +0 -0
- lib/st_audiorec/__init__.py +0 -1
- lib/st_audiorec/frontend/.DS_Store +0 -0
- lib/st_audiorec/frontend/.env +0 -6
- lib/st_audiorec/frontend/.prettierrc +0 -5
- lib/st_audiorec/frontend/build/.DS_Store +0 -0
- lib/st_audiorec/frontend/build/asset-manifest.json +0 -22
- lib/st_audiorec/frontend/build/bootstrap.min.css +0 -0
- lib/st_audiorec/frontend/build/index.html +0 -1
- lib/st_audiorec/frontend/build/precache-manifest.4829c060d313d0b0d13d9af3b0180289.js +0 -26
- lib/st_audiorec/frontend/build/service-worker.js +0 -39
- lib/st_audiorec/frontend/build/static/.DS_Store +0 -0
- lib/st_audiorec/frontend/build/static/css/2.bfbf028b.chunk.css +0 -2
- lib/st_audiorec/frontend/build/static/css/2.bfbf028b.chunk.css.map +0 -1
- lib/st_audiorec/frontend/build/static/js/2.270b84d8.chunk.js +0 -0
- lib/st_audiorec/frontend/build/static/js/2.270b84d8.chunk.js.LICENSE.txt +0 -58
- lib/st_audiorec/frontend/build/static/js/2.270b84d8.chunk.js.map +0 -0
- lib/st_audiorec/frontend/build/static/js/main.833ba252.chunk.js +0 -2
- lib/st_audiorec/frontend/build/static/js/main.833ba252.chunk.js.map +0 -1
- lib/st_audiorec/frontend/build/static/js/runtime-main.11ec9aca.js +0 -2
- lib/st_audiorec/frontend/build/static/js/runtime-main.11ec9aca.js.map +0 -1
- lib/st_audiorec/frontend/build/styles.css +0 -59
- lib/st_audiorec/frontend/package-lock.json +0 -0
- lib/st_audiorec/frontend/package.json +0 -44
Dockerfile
CHANGED
@@ -1,23 +1,34 @@
|
|
1 |
-
|
2 |
|
|
|
3 |
|
4 |
-
RUN pip install --user --upgrade pip
|
5 |
|
6 |
-
RUN apt-get update &&
|
|
|
|
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
RUN pip install --no-cache-dir -r requirements.txt
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
ENV PYTHONPATH "${PYTHONPATH}:/app"
|
18 |
|
|
|
|
|
19 |
EXPOSE 7860
|
20 |
|
21 |
HEALTHCHECK CMD curl --fail http://localhost:7860/_stcore/health
|
22 |
|
23 |
-
|
|
|
|
|
|
1 |
+
# syntax=docker/dockerfile:1
|
2 |
|
3 |
+
FROM python:3.8
|
4 |
|
|
|
5 |
|
6 |
+
RUN apt-get update && \
|
7 |
+
apt-get install -y ffmpeg jq curl && \
|
8 |
+
pip install --upgrade pip
|
9 |
|
10 |
+
WORKDIR /app
|
11 |
|
12 |
+
COPY requirements.txt .
|
13 |
RUN pip install --no-cache-dir -r requirements.txt
|
14 |
|
15 |
+
COPY scripts/ .
|
16 |
+
COPY app ./app
|
17 |
+
copy img ./img
|
18 |
+
|
19 |
+
RUN wget --progress=bar:force:noscroll https://huggingface.co/fabiogra/baseline_vocal_remover/resolve/main/baseline.pth
|
20 |
+
|
21 |
+
RUN mkdir -p /tmp/ /tmp/vocal_remover /.cache /.config && \
|
22 |
+
chmod 777 /tmp /tmp/vocal_remover /.cache /.config
|
23 |
|
24 |
ENV PYTHONPATH "${PYTHONPATH}:/app"
|
25 |
|
26 |
+
RUN chmod +x prepare_samples.sh
|
27 |
+
|
28 |
EXPOSE 7860
|
29 |
|
30 |
HEALTHCHECK CMD curl --fail http://localhost:7860/_stcore/health
|
31 |
|
32 |
+
RUN ["./prepare_samples.sh"]
|
33 |
+
|
34 |
+
ENTRYPOINT ["streamlit", "run", "app/header.py", "--server.port=7860", "--server.address=0.0.0.0"]
|
README.md
CHANGED
@@ -1,37 +1,210 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
|
|
|
|
|
|
7 |
pinned: true
|
8 |
---
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
# Music Source Splitter 🎶
|
13 |
-
<a href="https://huggingface.co/spaces/fabiogra/st-music-splitter"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-blue" alt="Hugging Face Spaces"></a>
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
The model can separate the vocals, drums, bass, and other from a music track.
|
19 |
|
20 |
-
|
21 |
|
22 |
-
You can use the demo [here](https://huggingface.co/spaces/fabiogra/st-music-splitter), or run it locally with:
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
```bash
|
25 |
-
|
|
|
26 |
```
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
|
|
|
|
33 |
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Test Moseca
|
3 |
+
emoji: 🎤🎸🥁🎹
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: purple
|
6 |
sdk: docker
|
7 |
+
app_port: 7860
|
8 |
+
models: ["https://huggingface.co/fabiogra/baseline_vocal_remover"]
|
9 |
+
tags: ["audio", "music", "vocal-removal", "karaoke", "music-separation", "music-source-separation"]
|
10 |
pinned: true
|
11 |
---
|
12 |
|
13 |
+
<p align="center">
|
14 |
+
<img src="img/logo_moseca.png" alt="logo" width="70" />
|
15 |
+
</p>
|
16 |
+
<h2 align="center">Moseca</h1>
|
17 |
+
<p align="center">Music Source Separation & Karaoke</p>
|
18 |
|
|
|
|
|
19 |
|
20 |
+
</a>
|
21 |
+
<a href="https://huggingface.co/spaces/fabiogra/moseca?duplicate=true">
|
22 |
+
<img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-blue"
|
23 |
+
alt="Hugging Face Spaces"></a>
|
24 |
+
<a href="https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true">
|
25 |
+
<img src="https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white"
|
26 |
+
alt="Docker"></a><a href="https://www.buymeacoffee.com/fabiogra">
|
27 |
+
<img src="https://img.shields.io/badge/Buy%20me%20a%20coffee--yellow.svg?logo=buy-me-a-coffee&logoColor=orange&style=social"
|
28 |
+
alt="Buy me a coffee"></a>
|
29 |
|
30 |
+
---
|
31 |
+
|
32 |
+
- [Setup](#setup)
|
33 |
+
- [About](#about)
|
34 |
+
- [High-Quality Stem Separation](#high-quality-stem-separation)
|
35 |
+
- [Advanced AI Algorithms](#advanced-ai-algorithms)
|
36 |
+
- [Karaoke Fun](#karaoke-fun)
|
37 |
+
- [Easy Deployment](#easy-deployment)
|
38 |
+
- [Open-Source and Free](#open-source-and-free)
|
39 |
+
- [Support](#support)
|
40 |
+
- [FAQs](#faqs)
|
41 |
+
- [What is Moseca?](#what-is-moseca)
|
42 |
+
- [Are there any limitations?](#are-there-any-limitations)
|
43 |
+
- [How does Moseca work?](#how-does-moseca-work)
|
44 |
+
- [How do I use Moseca?](#how-do-i-use-moseca)
|
45 |
+
- [Where can I find the code for Moseca?](#where-can-i-find-the-code-for-moseca)
|
46 |
+
- [How can I get in touch with you?](#how-can-i-get-in-touch-with-you)
|
47 |
+
- [Disclaimer](#disclaimer)
|
48 |
|
|
|
49 |
|
50 |
+
---
|
51 |
|
|
|
52 |
|
53 |
+
## Setup
|
54 |
+
### Local environment
|
55 |
+
Create a new environment with Python 3.8 and install the requirements:
|
56 |
+
```bash
|
57 |
+
pip install -r requirements.txt
|
58 |
+
```
|
59 |
+
then run the app with:
|
60 |
+
```bash
|
61 |
+
streamlit run app/header.py
|
62 |
+
```
|
63 |
+
### Docker
|
64 |
+
You can also run the app with Docker:
|
65 |
```bash
|
66 |
+
docker build -t moseca .
|
67 |
+
docker run -it --rm -p 7860:7860 $(DOCKER_IMAGE_NAME)
|
68 |
```
|
69 |
+
or pull the image from Hugging Face Spaces:
|
70 |
+
```bash
|
71 |
+
docker run -it -p 7860:7860 --platform=linux/amd64 \
|
72 |
+
registry.hf.space/fabiogra-moseca:latest
|
73 |
+
```
|
74 |
+
|
75 |
+
You can set the following environment variables to limit the resources used by the app:
|
76 |
+
- ENV_LIMITATION=true
|
77 |
+
- LIMIT_CPU=true
|
78 |
+
---
|
79 |
+
## About
|
80 |
+
|
81 |
+
Welcome to Moseca, your personal web application designed to redefine your music experience.
|
82 |
+
Whether you're a musician looking to remix your favorite songs, a karaoke
|
83 |
+
enthusiast, or a music lover wanting to dive deeper into your favorite tracks,
|
84 |
+
Moseca is for you.
|
85 |
+
|
86 |
+
<br>
|
87 |
+
|
88 |
+
### High-Quality Stem Separation
|
89 |
+
|
90 |
+
<img title="High-Quality Stem Separation" src="https://i.imgur.com/l7H8YWL.png" width="250" ></img>
|
91 |
+
|
92 |
+
|
93 |
+
<br>
|
94 |
+
|
95 |
+
Separate up to 6 stems including 🗣voice, 🥁drums, 🔉bass, 🎸guitar,
|
96 |
+
🎹piano (beta), and 🎶 others.
|
97 |
+
|
98 |
+
<br>
|
99 |
+
|
100 |
+
### Advanced AI Algorithms
|
101 |
+
|
102 |
+
<img title="Advanced AI Algorithms" src="https://i.imgur.com/I8Pvdav.png" width="250" ></img>
|
103 |
+
|
104 |
+
<br>
|
105 |
+
|
106 |
+
Moseca utilizes state-of-the-art AI technology to extract voice or music from
|
107 |
+
your original songs accurately.
|
108 |
+
|
109 |
+
<br>
|
110 |
+
|
111 |
+
### Karaoke Fun
|
112 |
+
|
113 |
+
<img title="Karaoke Fun" src="https://i.imgur.com/nsn3JGV.png" width="250" ></img>
|
114 |
+
|
115 |
+
<br>
|
116 |
+
|
117 |
+
Engage with your favorite tunes in a whole new way!
|
118 |
+
|
119 |
+
Moseca offers an immersive online karaoke experience, allowing you to search
|
120 |
+
for any song on YouTube and remove the vocals online.
|
121 |
+
|
122 |
+
Enjoy singing along with high-quality instrumentals at the comfort of your home.
|
123 |
+
|
124 |
+
|
125 |
+
<br>
|
126 |
+
|
127 |
+
### Easy Deployment
|
128 |
+
|
129 |
+
|
130 |
+
With Moseca, you can deploy your personal Moseca app in the
|
131 |
+
<a href="https://huggingface.co/spaces/fabiogra/moseca?duplicate=true">
|
132 |
+
<img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-blue"
|
133 |
+
alt="Hugging Face Spaces"></a> or locally with
|
134 |
+
[![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true)
|
135 |
+
in just one click.
|
136 |
+
|
137 |
+
<br>
|
138 |
+
|
139 |
+
### Open-Source and Free
|
140 |
+
|
141 |
+
Moseca is the free and open-source alternative to lalal.ai, splitter.ai or media.io vocal remover.
|
142 |
+
|
143 |
+
You can modify, distribute, and use it free of charge. I believe in the power of community
|
144 |
+
collaboration and encourage users to contribute to our source code, making Moseca better with
|
145 |
+
each update.
|
146 |
+
|
147 |
+
|
148 |
+
<br>
|
149 |
+
|
150 |
+
### Support
|
151 |
+
|
152 |
+
- Show your support by giving a star to the GitHub repository [![GitHub stars](https://img.shields.io/github/stars/fabiogra/moseca.svg?style=social&label=Star&maxAge=2592000)](https://github.com/fabiogra/moseca).
|
153 |
+
- If you have found an issue or have a suggestion to improve Moseca, you can open an [![GitHub issues](https://img.shields.io/github/issues/fabiogra/moseca.svg)](https://github.com/fabiogra/moseca/issues/new)
|
154 |
+
- Enjoy Moseca? [![Buymeacoffee](https://img.shields.io/badge/Buy%20me%20a%20coffee--yellow.svg?logo=buy-me-a-coffee&logoColor=orange&style=social)](https://www.buymeacoffee.com/fabiogra)
|
155 |
+
|
156 |
+
------
|
157 |
+
|
158 |
+
## FAQs
|
159 |
+
|
160 |
+
### What is Moseca?
|
161 |
+
|
162 |
+
Moseca is an open-source web app that utilizes advanced AI technology to separate vocals and
|
163 |
+
instrumentals from music tracks. It also provides an online karaoke experience by allowing you
|
164 |
+
to search for any song on YouTube and remove the vocals.
|
165 |
+
|
166 |
+
### Are there any limitations?
|
167 |
+
Yes, in this environment there are some limitations regarding lenght processing
|
168 |
+
and CPU usage to allow a smooth experience for all users.
|
169 |
+
|
170 |
+
<b>If you want to <u>remove these limitations</u> you can deploy a Moseca app in your personal
|
171 |
+
environment like in the <a href="https://huggingface.co/spaces/fabiogra/moseca?duplicate=true"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-blue" alt="Hugging Face Spaces"></a> or locally with [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true)</b>
|
172 |
+
|
173 |
+
### How does Moseca work?
|
174 |
+
Moseca utilizes the Hybrid Spectrogram and Waveform Source Separation ([DEMUCS](https://github.com/facebookresearch/demucs)) model from Facebook. For fast karaoke vocal removal, Moseca uses the AI vocal remover developed by [tsurumeso](https://github.com/tsurumeso/vocal-remover).
|
175 |
+
|
176 |
+
### How do I use Moseca?
|
177 |
+
1. Upload your file: choose your song and upload it to Moseca. It supports
|
178 |
+
a wide range of music formats for your convenience.
|
179 |
+
|
180 |
+
2. Choose separation mode: opt for voice only, 4-stem or 6-stem separation
|
181 |
+
depending on your requirement.
|
182 |
+
|
183 |
+
3. Let AI do its magic: Moseca’s advanced AI will work to separate vocals
|
184 |
+
from music in a matter of minutes, giving you high-quality, separated audio tracks.
|
185 |
+
|
186 |
+
4. Download and enjoy: preview and download your separated audio tracks.
|
187 |
+
Now you can enjoy them anytime, anywhere!
|
188 |
+
|
189 |
+
|
190 |
+
### Where can I find the code for Moseca?
|
191 |
+
|
192 |
+
The code for Moseca is readily available on
|
193 |
+
[GitHub](https://github.com/fabiogra/moseca) and
|
194 |
+
[Hugging Face](https://huggingface.co/spaces/fabiogra/moseca).
|
195 |
|
196 |
|
197 |
+
### How can I get in touch with you?
|
198 |
|
199 |
+
For any questions or feedback, feel free to contact me on
|
200 |
+
[![Twitter](https://badgen.net/badge/icon/twitter?icon=twitter&label)](https://twitter.com/grsFabio)
|
201 |
+
or [LinkedIn](https://www.linkedin.com/in/fabio-grasso/en).
|
202 |
|
203 |
+
------
|
204 |
+
## Disclaimer
|
205 |
|
206 |
+
Moseca is designed to separate vocals and instruments from copyrighted music for
|
207 |
+
legally permissible purposes, such as learning, practicing, research, or other non-commercial
|
208 |
+
activities that fall within the scope of fair use or exceptions to copyright. As a user, you are
|
209 |
+
responsible for ensuring that your use of separated audio tracks complies with the legal
|
210 |
+
requirements in your jurisdiction.
|
app.py
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
from app import main
|
2 |
-
|
3 |
-
main.run()
|
|
|
|
|
|
|
|
app/_fastapi_server.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from fastapi.responses import FileResponse
|
3 |
+
from urllib.parse import unquote
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
|
10 |
+
@app.get("/streaming/{path:path}")
|
11 |
+
async def serve_streaming(path: str):
|
12 |
+
# Decode URL-encoded characters
|
13 |
+
decoded_path = unquote(path)
|
14 |
+
return FileResponse(decoded_path, filename=os.path.basename(decoded_path))
|
15 |
+
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
import uvicorn
|
19 |
+
|
20 |
+
uvicorn.run(app, host="127.0.0.1", port=8000)
|
app/examples.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
from app.helpers import load_audio_segment, plot_audio
|
4 |
-
|
5 |
-
def _load_example(name: str):
|
6 |
-
st.markdown("<center><h3> Original </h3></center>", unsafe_allow_html=True)
|
7 |
-
|
8 |
-
cols = st.columns(2)
|
9 |
-
with cols[0]:
|
10 |
-
auseg = load_audio_segment(f"samples/{name}", "mp3")
|
11 |
-
plot_audio(auseg, step=50)
|
12 |
-
with cols[1]:
|
13 |
-
audio_file = open(f"samples/{name}", "rb")
|
14 |
-
audio_bytes = audio_file.read()
|
15 |
-
st.audio(audio_bytes)
|
16 |
-
|
17 |
-
for file in ["vocals.mp3", "drums.mp3", "bass.mp3", "other.mp3"]:
|
18 |
-
st.markdown("<br>", unsafe_allow_html=True)
|
19 |
-
label = file.split(".")[0].capitalize()
|
20 |
-
label = {
|
21 |
-
"Drums": "🥁",
|
22 |
-
"Bass": "🎸",
|
23 |
-
"Other": "🎹",
|
24 |
-
"Vocals": "🎤",
|
25 |
-
}.get(label) + " " + label
|
26 |
-
st.markdown("<center><h3>" + label + "</h3></center>", unsafe_allow_html=True)
|
27 |
-
|
28 |
-
cols = st.columns(2)
|
29 |
-
with cols[0]:
|
30 |
-
auseg = load_audio_segment(f"samples/{name.split('.mp3')[0]}/{file}", "mp3")
|
31 |
-
plot_audio(auseg, step=50)
|
32 |
-
with cols[1]:
|
33 |
-
audio_file = open(f"samples/{name.split('.mp3')[0]}/{file}", "rb")
|
34 |
-
audio_bytes = audio_file.read()
|
35 |
-
st.audio(audio_bytes)
|
36 |
-
|
37 |
-
|
38 |
-
def show_examples():
|
39 |
-
with st.columns([2, 8, 1])[1]:
|
40 |
-
selection = st.selectbox("Select an example music to quickly see results", ["Something About You - Marilyn Ford", "Broke Me - FASSounds", "Indie Rock"])
|
41 |
-
if selection == "Broke Me - FASSounds":
|
42 |
-
_load_example("broke-me-fassounds.mp3")
|
43 |
-
link = "https://pixabay.com/users/fassounds-3433550/"
|
44 |
-
st.markdown(
|
45 |
-
f"""Music by <a href="{link}">FASSounds</a> from <a href="{link}">Pixabay</a>""",
|
46 |
-
unsafe_allow_html=True)
|
47 |
-
elif selection == "Indie Rock":
|
48 |
-
_load_example("indie-rock.mp3")
|
49 |
-
link = "https://pixabay.com/music/indie-rock-112771/"
|
50 |
-
st.markdown(
|
51 |
-
f"""Music by <a href="{link}">Music_Unlimited</a> from <a href="{link}">Pixabay</a>""",
|
52 |
-
unsafe_allow_html=True)
|
53 |
-
elif selection == "Something About You - Marilyn Ford":
|
54 |
-
_load_example("something-about-you-marilyn-ford.mp3")
|
55 |
-
link = "https://pixabay.com/music/rnb-something-about-you-marilyn-ford-135781/"
|
56 |
-
st.markdown(
|
57 |
-
f"""Music by <a href="{link}">Marilyn Ford</a> from <a href="{link}">Pixabay</a>""",
|
58 |
-
unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/footer.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from streamlit.components.v1 import html
|
4 |
+
from htbuilder import HtmlElement, div, a, p, img, styles
|
5 |
+
from htbuilder.units import percent, px
|
6 |
+
|
7 |
+
|
8 |
+
def image(src_as_string, **style):
|
9 |
+
return img(src=src_as_string, style=styles(**style))
|
10 |
+
|
11 |
+
|
12 |
+
def link(link, text, **style):
|
13 |
+
return a(_href=link, _target="_blank", style=styles(**style))(text)
|
14 |
+
|
15 |
+
|
16 |
+
def layout(*args):
|
17 |
+
style = """
|
18 |
+
<style>
|
19 |
+
footer {visibility: hidden;}
|
20 |
+
.stApp { bottom: 50px; }
|
21 |
+
</style>
|
22 |
+
"""
|
23 |
+
|
24 |
+
style_div = styles(
|
25 |
+
position="fixed",
|
26 |
+
left=0,
|
27 |
+
bottom=0,
|
28 |
+
margin=px(0, 0, 0, 0),
|
29 |
+
width=percent(100),
|
30 |
+
color="black",
|
31 |
+
text_align="center",
|
32 |
+
height="auto",
|
33 |
+
opacity=1,
|
34 |
+
align_items="center",
|
35 |
+
flex_direction="column",
|
36 |
+
display="flex",
|
37 |
+
)
|
38 |
+
body = p(
|
39 |
+
id="myFooter",
|
40 |
+
style=styles(
|
41 |
+
margin=px(0, 0, 0, 0),
|
42 |
+
padding=px(5),
|
43 |
+
font_size="0.8rem",
|
44 |
+
color="rgb(51,51,51)",
|
45 |
+
font_family="Exo",
|
46 |
+
),
|
47 |
+
)
|
48 |
+
foot = div(style=style_div)(body)
|
49 |
+
|
50 |
+
st.markdown(style, unsafe_allow_html=True)
|
51 |
+
|
52 |
+
for arg in args:
|
53 |
+
if isinstance(arg, str):
|
54 |
+
body(arg)
|
55 |
+
|
56 |
+
elif isinstance(arg, HtmlElement):
|
57 |
+
body(arg)
|
58 |
+
|
59 |
+
st.markdown(str(foot), unsafe_allow_html=True)
|
60 |
+
|
61 |
+
js_code = """
|
62 |
+
<script>
|
63 |
+
function rgbReverse(rgb){
|
64 |
+
var r = rgb[0]*0.299;
|
65 |
+
var g = rgb[1]*0.587;
|
66 |
+
var b = rgb[2]*0.114;
|
67 |
+
|
68 |
+
if ((r + g + b)/255 > 0.5){
|
69 |
+
return "rgb(49, 51, 63)"
|
70 |
+
}else{
|
71 |
+
return "rgb(250, 250, 250)"
|
72 |
+
}
|
73 |
+
|
74 |
+
};
|
75 |
+
var stApp_css = window.parent.document.querySelector("#root > div:nth-child(1) > div > div > div");
|
76 |
+
window.onload = function () {
|
77 |
+
var mutationObserver = new MutationObserver(function(mutations) {
|
78 |
+
mutations.forEach(function(mutation) {
|
79 |
+
var bgColor = window.getComputedStyle(stApp_css).backgroundColor.replace("rgb(", "").replace(")", "").split(", ");
|
80 |
+
var fontColor = rgbReverse(bgColor);
|
81 |
+
var pTag = window.parent.document.getElementById("myFooter");
|
82 |
+
pTag.style.color = fontColor;
|
83 |
+
});
|
84 |
+
});
|
85 |
+
|
86 |
+
/**Element**/
|
87 |
+
mutationObserver.observe(stApp_css, {
|
88 |
+
attributes: true,
|
89 |
+
characterData: true,
|
90 |
+
childList: true,
|
91 |
+
subtree: true,
|
92 |
+
attributeOldValue: true,
|
93 |
+
characterDataOldValue: true
|
94 |
+
});
|
95 |
+
}
|
96 |
+
|
97 |
+
|
98 |
+
</script>
|
99 |
+
"""
|
100 |
+
html(js_code)
|
101 |
+
|
102 |
+
|
103 |
+
def footer():
|
104 |
+
myargs = [
|
105 |
+
"Made in ",
|
106 |
+
link(
|
107 |
+
"https://streamlit.io/",
|
108 |
+
image("https://streamlit.io/images/brand/streamlit-mark-color.png", width="20px"),
|
109 |
+
),
|
110 |
+
" with ❤️ by ",
|
111 |
+
link("https://twitter.com/grsFabio", "@grsFabio"),
|
112 |
+
" ",
|
113 |
+
link(
|
114 |
+
"https://www.buymeacoffee.com/fabiogra",
|
115 |
+
image("https://i.imgur.com/YFu6MMA.png", margin="0em", align="top", width="130px"),
|
116 |
+
),
|
117 |
+
]
|
118 |
+
layout(*myargs)
|
app/header.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from helpers import switch_page
|
4 |
+
from style import CSS
|
5 |
+
import logging
|
6 |
+
|
7 |
+
from streamlit_option_menu import option_menu
|
8 |
+
|
9 |
+
logging.basicConfig(
|
10 |
+
format="%(asctime)s %(levelname)-8s %(message)s",
|
11 |
+
level=logging.INFO,
|
12 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
def header(logo_and_title=True):
|
17 |
+
if "first_run" not in st.session_state:
|
18 |
+
st.session_state.first_run = True
|
19 |
+
for key in [
|
20 |
+
"search_results",
|
21 |
+
"selected_value",
|
22 |
+
"filename",
|
23 |
+
"executed",
|
24 |
+
"play_karaoke",
|
25 |
+
"url",
|
26 |
+
"random_song",
|
27 |
+
"last_dir",
|
28 |
+
]:
|
29 |
+
st.session_state[key] = None
|
30 |
+
st.session_state.video_options = []
|
31 |
+
st.session_state.page = "Karaoke"
|
32 |
+
switch_page(st.session_state.page)
|
33 |
+
|
34 |
+
st.set_page_config(
|
35 |
+
page_title="Moseca - Music Separation and Karaoke - Free and Open Source alternative to lalal.ai, splitter.ai or media.io vocal remover.",
|
36 |
+
page_icon="img/logo_moseca.png",
|
37 |
+
layout="wide",
|
38 |
+
initial_sidebar_state="collapsed",
|
39 |
+
)
|
40 |
+
st.markdown(CSS, unsafe_allow_html=True)
|
41 |
+
|
42 |
+
options = ["Karaoke", "Separate", "About"]
|
43 |
+
page = option_menu(
|
44 |
+
menu_title=None,
|
45 |
+
options=options,
|
46 |
+
# bootrap icons
|
47 |
+
icons=["play-btn-fill", "file-earmark-music", "info-circle"],
|
48 |
+
default_index=options.index(st.session_state.page),
|
49 |
+
orientation="horizontal",
|
50 |
+
styles={"nav-link": {"padding-left": "1.5rem", "padding-right": "1.5rem"}},
|
51 |
+
key="",
|
52 |
+
)
|
53 |
+
if page != st.session_state.page:
|
54 |
+
switch_page(page)
|
55 |
+
|
56 |
+
if logo_and_title:
|
57 |
+
head = st.columns([5, 1, 3, 5])
|
58 |
+
with head[1]:
|
59 |
+
st.image("img/logo_moseca.png", use_column_width=False, width=80)
|
60 |
+
with head[2]:
|
61 |
+
st.markdown(
|
62 |
+
"<h1>moseca</h1><p><b>Music Source Separation & Karaoke</b></p>",
|
63 |
+
unsafe_allow_html=True,
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
header()
|
app/helpers.py
CHANGED
@@ -1,19 +1,160 @@
|
|
1 |
-
|
|
|
|
|
2 |
|
3 |
-
import
|
4 |
-
import plotly.graph_objs as go
|
5 |
-
import plotly.express as px
|
6 |
-
import pandas as pd
|
7 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def load_audio_segment(path: str, format: str) -> AudioSegment:
|
11 |
return AudioSegment.from_file(path, format=format)
|
12 |
|
13 |
-
|
|
|
|
|
14 |
samples = _audio_segment.get_array_of_samples()
|
15 |
-
arr = np.array(samples
|
16 |
-
|
17 |
-
fig =
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from io import BytesIO
|
3 |
+
import json
|
4 |
|
5 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
6 |
import numpy as np
|
7 |
+
import requests
|
8 |
+
import streamlit as st
|
9 |
+
from PIL import Image
|
10 |
+
from pydub import AudioSegment
|
11 |
+
from base64 import b64encode
|
12 |
+
from pathlib import Path
|
13 |
+
from streamlit.runtime.scriptrunner import RerunData, RerunException
|
14 |
+
from streamlit.source_util import get_pages
|
15 |
+
from streamlit_player import st_player
|
16 |
+
|
17 |
+
extensions = ["mp3", "wav", "ogg", "flac"] # we will look for all those file types.
|
18 |
+
example_songs = [1, 2, 3]
|
19 |
+
|
20 |
+
|
21 |
+
def img_to_bytes(img_path):
|
22 |
+
img_bytes = Path(img_path).read_bytes()
|
23 |
+
encoded = b64encode(img_bytes).decode()
|
24 |
+
return encoded
|
25 |
+
|
26 |
+
|
27 |
+
# @st.cache_data(show_spinner=False)
|
28 |
+
def img_to_html(img_path):
|
29 |
+
img_html = "<div style='display: flex; justify-content: center; align-items: center; height: 50vh;'><img src='data:image/png;base64,{}' class='img-fluid' style='max-width: 100%; max-height: 100%;' ></div>".format(
|
30 |
+
img_to_bytes(img_path)
|
31 |
+
)
|
32 |
+
return img_html
|
33 |
|
34 |
+
|
35 |
+
@st.cache_data(show_spinner=False)
|
36 |
+
def url_is_valid(url):
|
37 |
+
if url.startswith("http") is False:
|
38 |
+
st.error("URL should start with http or https.")
|
39 |
+
return False
|
40 |
+
elif url.split(".")[-1] not in extensions:
|
41 |
+
st.error("Extension not supported.")
|
42 |
+
return False
|
43 |
+
try:
|
44 |
+
r = requests.get(url)
|
45 |
+
r.raise_for_status()
|
46 |
+
return True
|
47 |
+
except Exception:
|
48 |
+
st.error("URL is not valid.")
|
49 |
+
return False
|
50 |
+
|
51 |
+
|
52 |
+
@st.cache_data(show_spinner=False)
|
53 |
def load_audio_segment(path: str, format: str) -> AudioSegment:
|
54 |
return AudioSegment.from_file(path, format=format)
|
55 |
|
56 |
+
|
57 |
+
@st.cache_data(show_spinner=False)
|
58 |
+
def plot_audio(_audio_segment: AudioSegment, *args, **kwargs) -> Image.Image:
|
59 |
samples = _audio_segment.get_array_of_samples()
|
60 |
+
arr = np.array(samples)
|
61 |
+
|
62 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
63 |
+
ax.plot(arr, linewidth=0.05)
|
64 |
+
ax.set_axis_off()
|
65 |
+
|
66 |
+
# Set the background color to transparent
|
67 |
+
fig.patch.set_alpha(0)
|
68 |
+
ax.patch.set_alpha(0)
|
69 |
+
|
70 |
+
buf = BytesIO()
|
71 |
+
plt.savefig(buf, format="png", dpi=100, bbox_inches="tight")
|
72 |
+
buf.seek(0)
|
73 |
+
image = Image.open(buf)
|
74 |
+
|
75 |
+
plt.close(fig)
|
76 |
+
return image
|
77 |
+
|
78 |
+
|
79 |
+
def get_random_song():
|
80 |
+
sample_songs = json.load(open("sample_songs.json"))
|
81 |
+
name, url = random.choice(list(sample_songs.items()))
|
82 |
+
return name, url
|
83 |
+
|
84 |
+
|
85 |
+
def streamlit_player(
|
86 |
+
player,
|
87 |
+
url,
|
88 |
+
height,
|
89 |
+
is_active,
|
90 |
+
muted,
|
91 |
+
start,
|
92 |
+
key,
|
93 |
+
playback_rate=1,
|
94 |
+
events=None,
|
95 |
+
play_inline=False,
|
96 |
+
light=False,
|
97 |
+
):
|
98 |
+
with player:
|
99 |
+
options = {
|
100 |
+
"progress_interval": 1000,
|
101 |
+
"playing": is_active, # st.checkbox("Playing", False),
|
102 |
+
"muted": muted,
|
103 |
+
"light": light,
|
104 |
+
"play_inline": play_inline,
|
105 |
+
"playback_rate": playback_rate,
|
106 |
+
"height": height,
|
107 |
+
"config": {"start": start},
|
108 |
+
"events": events,
|
109 |
+
}
|
110 |
+
if url != "":
|
111 |
+
events = st_player(url, **options, key=key)
|
112 |
+
return events
|
113 |
+
|
114 |
+
|
115 |
+
@st.cache_data(show_spinner=False)
|
116 |
+
def local_audio(path, mime="audio/mp3"):
|
117 |
+
data = b64encode(Path(path).read_bytes()).decode()
|
118 |
+
return [{"type": mime, "src": f"data:{mime};base64,{data}"}]
|
119 |
+
|
120 |
+
|
121 |
+
def _standardize_name(name: str) -> str:
|
122 |
+
return name.lower().replace("_", " ").strip()
|
123 |
+
|
124 |
+
|
125 |
+
@st.cache_data(show_spinner=False)
|
126 |
+
def switch_page(page_name: str):
|
127 |
+
st.session_state.page = page_name
|
128 |
+
|
129 |
+
page_name = _standardize_name(page_name)
|
130 |
+
|
131 |
+
pages = get_pages("header.py") # OR whatever your main page is called
|
132 |
+
|
133 |
+
for page_hash, config in pages.items():
|
134 |
+
if _standardize_name(config["page_name"]) == page_name:
|
135 |
+
raise RerunException(
|
136 |
+
RerunData(
|
137 |
+
page_script_hash=page_hash,
|
138 |
+
page_name=page_name,
|
139 |
+
)
|
140 |
+
)
|
141 |
+
|
142 |
+
page_names = [_standardize_name(config["page_name"]) for config in pages.values()]
|
143 |
+
raise ValueError(f"Could not find page {page_name}. Must be one of {page_names}")
|
144 |
+
|
145 |
+
|
146 |
+
def st_local_audio(pathname, key):
|
147 |
+
st_player(
|
148 |
+
local_audio(pathname),
|
149 |
+
**{
|
150 |
+
"progress_interval": 1000,
|
151 |
+
"playing": False,
|
152 |
+
"muted": False,
|
153 |
+
"light": False,
|
154 |
+
"play_inline": True,
|
155 |
+
"playback_rate": 1,
|
156 |
+
"height": 40,
|
157 |
+
"config": {"start": 0, "forceAudio": True, "forceHLS": True, "forceSafariHLS": True},
|
158 |
+
},
|
159 |
+
key=key,
|
160 |
+
)
|
app/main.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import os
|
3 |
-
from pathlib import Path
|
4 |
-
|
5 |
-
import requests
|
6 |
-
import streamlit as st
|
7 |
-
from app.examples import show_examples
|
8 |
-
|
9 |
-
from demucs_runner import separator
|
10 |
-
from lib.st_custom_components import st_audiorec
|
11 |
-
from helpers import load_audio_segment, plot_audio
|
12 |
-
from sidebar import text as text_side
|
13 |
-
|
14 |
-
logging.basicConfig(
|
15 |
-
format="%(asctime)s %(levelname)-8s %(message)s",
|
16 |
-
level=logging.DEBUG,
|
17 |
-
datefmt="%Y-%m-%d %H:%M:%S",
|
18 |
-
)
|
19 |
-
|
20 |
-
max_duration = 10 # in seconds
|
21 |
-
|
22 |
-
model = "htdemucs"
|
23 |
-
extensions = ["mp3", "wav", "ogg", "flac"] # we will look for all those file types.
|
24 |
-
two_stems = None # only separate one stems from the rest, for instance
|
25 |
-
|
26 |
-
# Options for the output audio.
|
27 |
-
mp3 = True
|
28 |
-
mp3_rate = 320
|
29 |
-
float32 = False # output as float 32 wavs, unsused if 'mp3' is True.
|
30 |
-
int24 = False # output as int24 wavs, unused if 'mp3' is True.
|
31 |
-
# You cannot set both `float32 = True` and `int24 = True` !!
|
32 |
-
|
33 |
-
|
34 |
-
out_path = Path("/tmp")
|
35 |
-
in_path = Path("/tmp")
|
36 |
-
|
37 |
-
|
38 |
-
def url_is_valid(url):
|
39 |
-
if url.startswith("http") is False:
|
40 |
-
st.error("URL should start with http or https.")
|
41 |
-
return False
|
42 |
-
elif url.split(".")[-1] not in extensions:
|
43 |
-
st.error("Extension not supported.")
|
44 |
-
return False
|
45 |
-
try:
|
46 |
-
r = requests.get(url)
|
47 |
-
r.raise_for_status()
|
48 |
-
return True
|
49 |
-
except Exception:
|
50 |
-
st.error("URL is not valid.")
|
51 |
-
return False
|
52 |
-
|
53 |
-
|
54 |
-
def run():
|
55 |
-
st.markdown("<h1><center>🎶 Music Source Splitter</center></h1>", unsafe_allow_html=True)
|
56 |
-
st.markdown("<center><i>Hight Quality Audio Source Separation</i></center>", unsafe_allow_html=True)
|
57 |
-
st.sidebar.markdown(text_side, unsafe_allow_html=True)
|
58 |
-
st.markdown("""
|
59 |
-
<style>
|
60 |
-
.st-af {
|
61 |
-
font-size: 1.5rem;
|
62 |
-
align-items: center;
|
63 |
-
padding-right: 2rem;
|
64 |
-
}
|
65 |
-
|
66 |
-
</style>
|
67 |
-
""",
|
68 |
-
unsafe_allow_html=True,
|
69 |
-
)
|
70 |
-
filename = None
|
71 |
-
choice = st.radio(label=" ", options=["🔗 From URL", "⬆️ Upload File", "🎤 Record Audio"], horizontal=True)
|
72 |
-
if choice == "🔗 From URL":
|
73 |
-
url = st.text_input("Paste the URL of the audio file", key="url", help="Supported formats: mp3, wav, ogg, flac.")
|
74 |
-
if url != "":
|
75 |
-
# check if the url is valid
|
76 |
-
if url_is_valid(url):
|
77 |
-
with st.spinner("Downloading audio..."):
|
78 |
-
filename = url.split("/")[-1]
|
79 |
-
os.system(f"wget -O {in_path / filename} {url}")
|
80 |
-
|
81 |
-
elif choice == "⬆️ Upload File":
|
82 |
-
uploaded_file = st.file_uploader("Choose a file", type=extensions, key="file", help="Supported formats: mp3, wav, ogg, flac.")
|
83 |
-
if uploaded_file is not None:
|
84 |
-
with open(in_path / uploaded_file.name, "wb") as f:
|
85 |
-
f.write(uploaded_file.getbuffer())
|
86 |
-
filename = uploaded_file.name
|
87 |
-
elif choice == "🎤 Record Audio":
|
88 |
-
wav_audio_data = st_audiorec()
|
89 |
-
if wav_audio_data is not None:
|
90 |
-
if wav_audio_data != b'RIFF,\x00\x00\x00WAVEfmt \x10\x00\x00\x00\x01\x00\x02\x00\x80>\x00\x00\x00\xfa\x00\x00\x04\x00\x10\x00data\x00\x00\x00\x00':
|
91 |
-
filename = "recording.wav"
|
92 |
-
with open(in_path / filename, "wb") as f:
|
93 |
-
f.write(wav_audio_data)
|
94 |
-
|
95 |
-
if filename is not None:
|
96 |
-
song = load_audio_segment(in_path / filename, filename.split(".")[-1])
|
97 |
-
|
98 |
-
n_secs = round(len(song) / 1000)
|
99 |
-
audio_file = open(in_path / filename, "rb")
|
100 |
-
audio_bytes = audio_file.read()
|
101 |
-
start_time = st.slider("Choose the start time", min_value=0, max_value=n_secs, step=1, value=0, help=f"Maximum duration is {max_duration} seconds.")
|
102 |
-
_ = st.audio(audio_bytes, start_time=start_time)
|
103 |
-
end_time = min(start_time + max_duration, n_secs)
|
104 |
-
song = song[start_time*1000:end_time*1000]
|
105 |
-
tot_time = end_time - start_time
|
106 |
-
st.info(f"Audio source will be processed from {start_time} to {end_time} seconds.", icon="⏱")
|
107 |
-
execute = st.button("Split Music 🎶", type="primary")
|
108 |
-
if execute:
|
109 |
-
song.export(in_path / filename, format=filename.split(".")[-1])
|
110 |
-
with st.spinner(f"Splitting source audio, it will take almost {round(tot_time*3.6)} seconds..."):
|
111 |
-
separator(
|
112 |
-
tracks=[in_path / filename],
|
113 |
-
out=out_path,
|
114 |
-
model=model,
|
115 |
-
device="cpu",
|
116 |
-
shifts=1,
|
117 |
-
overlap=0.5,
|
118 |
-
stem=two_stems,
|
119 |
-
int24=int24,
|
120 |
-
float32=float32,
|
121 |
-
clip_mode="rescale",
|
122 |
-
mp3=mp3,
|
123 |
-
mp3_bitrate=mp3_rate,
|
124 |
-
jobs=os.cpu_count(),
|
125 |
-
verbose=True,
|
126 |
-
)
|
127 |
-
|
128 |
-
last_dir = ".".join(filename.split(".")[:-1])
|
129 |
-
for file in ["vocals.mp3", "drums.mp3", "bass.mp3", "other.mp3"]:
|
130 |
-
file = out_path / Path(model) / last_dir / file
|
131 |
-
st.markdown("<hr>", unsafe_allow_html=True)
|
132 |
-
label = file.name.split(".")[0].replace("_", " ").capitalize()
|
133 |
-
# add emoji to label
|
134 |
-
label = {
|
135 |
-
"Drums": "🥁",
|
136 |
-
"Bass": "🎸",
|
137 |
-
"Other": "🎹",
|
138 |
-
"Vocals": "🎤",
|
139 |
-
}.get(label) + " " + label
|
140 |
-
st.markdown("<center><h3>" + label + "</h3></center>", unsafe_allow_html=True)
|
141 |
-
|
142 |
-
cols = st.columns(2)
|
143 |
-
with cols[0]:
|
144 |
-
auseg = load_audio_segment(file, "mp3")
|
145 |
-
plot_audio(auseg)
|
146 |
-
with cols[1]:
|
147 |
-
audio_file = open(file, "rb")
|
148 |
-
audio_bytes = audio_file.read()
|
149 |
-
st.audio(audio_bytes)
|
150 |
-
|
151 |
-
if __name__ == "__main__":
|
152 |
-
run()
|
153 |
-
st.markdown("<br><br>", unsafe_allow_html=True)
|
154 |
-
with st.expander("Show examples", expanded=False):
|
155 |
-
show_examples()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/pages/About.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from header import header
|
4 |
+
from footer import footer
|
5 |
+
|
6 |
+
|
7 |
+
def body():
|
8 |
+
with st.columns([2, 3, 2])[1]:
|
9 |
+
st.markdown(
|
10 |
+
"""
|
11 |
+
<center>
|
12 |
+
|
13 |
+
## Welcome to Moseca, your personal web application designed to redefine your music experience.
|
14 |
+
<font size="3"> Whether you're a musician looking to remix your favorite songs, a karaoke
|
15 |
+
enthusiast, or a music lover wanting to dive deeper into your favorite tracks,
|
16 |
+
Moseca is for you. </font>
|
17 |
+
|
18 |
+
<br>
|
19 |
+
|
20 |
+
### High-Quality Stem Separation
|
21 |
+
|
22 |
+
<center><img title="High-Quality Stem Separation" src="https://i.imgur.com/l7H8YWL.png" width="60%" ></img></center>
|
23 |
+
|
24 |
+
|
25 |
+
<br>
|
26 |
+
|
27 |
+
<font size="3"> Separate up to 6 stems including 🗣voice, 🥁drums, 🔉bass, 🎸guitar,
|
28 |
+
🎹piano (beta), and 🎶 others. </font>
|
29 |
+
|
30 |
+
<br>
|
31 |
+
|
32 |
+
### Advanced AI Algorithms
|
33 |
+
|
34 |
+
<center><img title="Advanced AI Algorithms" src="https://i.imgur.com/I8Pvdav.png" width="60%" ></img></center>
|
35 |
+
|
36 |
+
<br>
|
37 |
+
|
38 |
+
<font size="3"> Moseca utilizes state-of-the-art AI technology to extract voice or music from
|
39 |
+
your original songs accurately. </font>
|
40 |
+
|
41 |
+
<br>
|
42 |
+
|
43 |
+
### Karaoke Fun
|
44 |
+
|
45 |
+
<center><img title="Karaoke Fun" src="https://i.imgur.com/nsn3JGV.png" width="60%" ></img></center>
|
46 |
+
|
47 |
+
<br>
|
48 |
+
|
49 |
+
<font size="3"> Engage with your favorite tunes in a whole new way! </font>
|
50 |
+
|
51 |
+
<font size="3"> Moseca offers an immersive online karaoke experience, allowing you to search
|
52 |
+
for any song on YouTube and remove the vocals online. </font>
|
53 |
+
|
54 |
+
<font size="3"> Enjoy singing along with high-quality instrumentals at the comfort of your home.
|
55 |
+
</font>
|
56 |
+
|
57 |
+
<br>
|
58 |
+
|
59 |
+
### Easy Deployment
|
60 |
+
|
61 |
+
|
62 |
+
<font size="3"> With Moseca, you can deploy your personal Moseca app in the
|
63 |
+
<a href="https://huggingface.co/spaces/fabiogra/moseca?duplicate=true">
|
64 |
+
<img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-blue"
|
65 |
+
alt="Hugging Face Spaces"></a> or locally with </font>
|
66 |
+
[![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true)
|
67 |
+
<font size="3"> in just one click. </font>
|
68 |
+
|
69 |
+
<br>
|
70 |
+
|
71 |
+
### Open-Source and Free
|
72 |
+
|
73 |
+
<font size="3"> Moseca is the free and open-source alternative to lalal.ai, splitter.ai or media.io vocal remover.
|
74 |
+
|
75 |
+
You can modify, distribute, and use it free of charge. I believe in the power of community
|
76 |
+
collaboration and encourage users to contribute to our source code, making Moseca better with
|
77 |
+
each update.
|
78 |
+
</font>
|
79 |
+
|
80 |
+
<br>
|
81 |
+
|
82 |
+
### Support
|
83 |
+
|
84 |
+
- <font size="3"> Show your support by giving a star to the GitHub repository</font> [![GitHub stars](https://img.shields.io/github/stars/fabiogra/moseca.svg?style=social&label=Star&maxAge=2592000)](https://github.com/fabiogra/moseca).
|
85 |
+
- <font size="3"> If you have found an issue or have a suggestion to improve Moseca, you can open an</font> [![GitHub issues](https://img.shields.io/github/issues/fabiogra/moseca.svg)](https://github.com/fabiogra/moseca/issues/new)
|
86 |
+
- <font size="3"> Enjoy Moseca?</font> [![Buymeacoffee](https://img.shields.io/badge/Buy%20me%20a%20coffee--yellow.svg?logo=buy-me-a-coffee&logoColor=orange&style=social)](https://www.buymeacoffee.com/fabiogra)
|
87 |
+
|
88 |
+
------
|
89 |
+
|
90 |
+
## FAQs
|
91 |
+
|
92 |
+
### What is Moseca?
|
93 |
+
|
94 |
+
<font size="3"> Moseca is an open-source web app that utilizes advanced AI technology to separate vocals and
|
95 |
+
instrumentals from music tracks. It also provides an online karaoke experience by allowing you
|
96 |
+
to search for any song on YouTube and remove the vocals.</font>
|
97 |
+
|
98 |
+
### Are there any limitations?
|
99 |
+
<font size="3">Yes, in this environment there are some limitations regarding lenght processing
|
100 |
+
and CPU usage to allow a smooth experience for all users.
|
101 |
+
|
102 |
+
<b>If you want to <u>remove these limitations</u> you can deploy a Moseca app in your personal
|
103 |
+
environment like in the <a href="https://huggingface.co/spaces/fabiogra/moseca?duplicate=true"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-blue" alt="Hugging Face Spaces"></a> or locally with [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://huggingface.co/spaces/fabiogra/moseca/discussions?docker=true)</b>
|
104 |
+
</font>
|
105 |
+
### How does Moseca work?
|
106 |
+
<font size="3"> Moseca utilizes the Hybrid Spectrogram and Waveform Source Separation ([DEMUCS](https://github.com/facebookresearch/demucs)) model from Facebook. For fast karaoke vocal removal, Moseca uses the AI vocal remover developed by [tsurumeso](https://github.com/tsurumeso/vocal-remover).
|
107 |
+
</font>
|
108 |
+
### How do I use Moseca?
|
109 |
+
<font size="3">1. Upload your file: choose your song and upload it to Moseca. It supports
|
110 |
+
a wide range of music formats for your convenience.</font>
|
111 |
+
|
112 |
+
<font size="3">2. Choose separation mode: opt for voice only, 4-stem or 6-stem separation
|
113 |
+
depending on your requirement.</font>
|
114 |
+
|
115 |
+
<font size="3">3. Let AI do its magic: Moseca’s advanced AI will work to separate vocals
|
116 |
+
from music in a matter of minutes, giving you high-quality, separated audio tracks.</font>
|
117 |
+
|
118 |
+
<font size="3">4. Download and enjoy: preview and download your separated audio tracks.
|
119 |
+
Now you can enjoy them anytime, anywhere! </font>
|
120 |
+
</font>
|
121 |
+
|
122 |
+
### Where can I find the code for Moseca?
|
123 |
+
|
124 |
+
<font size="3">The code for Moseca is readily available on
|
125 |
+
[GitHub](https://github.com/fabiogra/moseca) and
|
126 |
+
[Hugging Face](https://huggingface.co/spaces/fabiogra/moseca).
|
127 |
+
</font>
|
128 |
+
|
129 |
+
### How can I get in touch with you?
|
130 |
+
|
131 |
+
<font size="3">For any questions or feedback, feel free to contact me on </font>
|
132 |
+
[![Twitter](https://badgen.net/badge/icon/twitter?icon=twitter&label)](https://twitter.com/grsFabio)
|
133 |
+
<font size="3">or</font> [LinkedIn](https://www.linkedin.com/in/fabio-grasso/en).
|
134 |
+
|
135 |
+
------
|
136 |
+
## Disclaimer
|
137 |
+
|
138 |
+
<font size="3">Moseca is designed to separate vocals and instruments from copyrighted music for
|
139 |
+
legally permissible purposes, such as learning, practicing, research, or other non-commercial
|
140 |
+
activities that fall within the scope of fair use or exceptions to copyright. As a user, you are
|
141 |
+
responsible for ensuring that your use of separated audio tracks complies with the legal
|
142 |
+
requirements in your jurisdiction.
|
143 |
+
</font>
|
144 |
+
|
145 |
+
</center>
|
146 |
+
""",
|
147 |
+
unsafe_allow_html=True,
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
if __name__ == "__main__":
|
152 |
+
header(logo_and_title=False)
|
153 |
+
body()
|
154 |
+
footer()
|
app/pages/Karaoke.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from streamlit_player import st_player
|
5 |
+
from streamlit_searchbox import st_searchbox
|
6 |
+
|
7 |
+
from service.youtube import (
|
8 |
+
get_youtube_url,
|
9 |
+
search_youtube,
|
10 |
+
download_audio_from_youtube,
|
11 |
+
)
|
12 |
+
from helpers import (
|
13 |
+
get_random_song,
|
14 |
+
load_audio_segment,
|
15 |
+
streamlit_player,
|
16 |
+
local_audio,
|
17 |
+
)
|
18 |
+
|
19 |
+
from service.vocal_remover.runner import separate, load_model
|
20 |
+
from footer import footer
|
21 |
+
from header import header
|
22 |
+
|
23 |
+
|
24 |
+
out_path = Path("/tmp")
|
25 |
+
in_path = Path("/tmp")
|
26 |
+
|
27 |
+
sess = st.session_state
|
28 |
+
|
29 |
+
|
30 |
+
def show_karaoke(pathname, initial_player):
|
31 |
+
cols = st.columns([1, 1, 3, 1])
|
32 |
+
with cols[1]:
|
33 |
+
sess.delay = st.slider(
|
34 |
+
label="Start delay in karaoke (seconds)",
|
35 |
+
key="delay_slider",
|
36 |
+
value=2,
|
37 |
+
min_value=0,
|
38 |
+
max_value=5,
|
39 |
+
help="Synchronize youtube player with karaoke audio by adding a delay to the youtube player.",
|
40 |
+
)
|
41 |
+
with cols[2]:
|
42 |
+
events = st_player(
|
43 |
+
local_audio(pathname),
|
44 |
+
**{
|
45 |
+
"progress_interval": 1000,
|
46 |
+
"playing": False,
|
47 |
+
"muted": False,
|
48 |
+
"light": False,
|
49 |
+
"play_inline": True,
|
50 |
+
"playback_rate": 1,
|
51 |
+
"height": 40,
|
52 |
+
"config": {
|
53 |
+
"start": 0,
|
54 |
+
"forceAudio": True,
|
55 |
+
},
|
56 |
+
"events": ["onProgress", "onPlay"],
|
57 |
+
},
|
58 |
+
key="karaoke_player",
|
59 |
+
)
|
60 |
+
st.markdown(
|
61 |
+
"<center>⬆️ Click on the play button to start karaoke<center>",
|
62 |
+
unsafe_allow_html=True,
|
63 |
+
)
|
64 |
+
with st.columns([1, 4, 1])[1]:
|
65 |
+
if events.name == "onProgress" and events.data["playedSeconds"] > 0:
|
66 |
+
initial_player.empty()
|
67 |
+
st_player(
|
68 |
+
sess.url + f"&t={sess.delay}s",
|
69 |
+
**{
|
70 |
+
"progress_interval": 1000,
|
71 |
+
"playing": True,
|
72 |
+
"muted": True,
|
73 |
+
"light": False,
|
74 |
+
"play_inline": False,
|
75 |
+
"playback_rate": 1,
|
76 |
+
"height": 250,
|
77 |
+
"events": None,
|
78 |
+
},
|
79 |
+
key="yt_muted_player",
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
def body():
|
84 |
+
st.markdown("<center>Search for a song on YouTube<center>", unsafe_allow_html=True)
|
85 |
+
yt_cols = st.columns([1, 3, 2, 1])
|
86 |
+
with yt_cols[1]:
|
87 |
+
selected_value = st_searchbox(
|
88 |
+
search_youtube,
|
89 |
+
label=None,
|
90 |
+
placeholder="Search by name...",
|
91 |
+
clear_on_submit=True,
|
92 |
+
key="yt_searchbox",
|
93 |
+
)
|
94 |
+
if selected_value is not None and selected_value in sess.video_options:
|
95 |
+
sess.random_song = None
|
96 |
+
|
97 |
+
if selected_value != sess.selected_value: # New song selected
|
98 |
+
sess.executed = False
|
99 |
+
|
100 |
+
sess.selected_value = selected_value
|
101 |
+
sess.url = get_youtube_url(selected_value)
|
102 |
+
|
103 |
+
with yt_cols[2]:
|
104 |
+
if st.button("🎲 Random song", use_container_width=True):
|
105 |
+
sess.last_dir, sess.url = get_random_song()
|
106 |
+
sess.random_song = True
|
107 |
+
sess.video_options = []
|
108 |
+
sess.executed = False
|
109 |
+
|
110 |
+
if sess.url is not None:
|
111 |
+
player_cols = st.columns([2, 2, 1, 1], gap="medium")
|
112 |
+
with player_cols[1]:
|
113 |
+
player = st.empty()
|
114 |
+
streamlit_player(
|
115 |
+
player,
|
116 |
+
sess.url,
|
117 |
+
height=200,
|
118 |
+
is_active=False,
|
119 |
+
muted=False,
|
120 |
+
start=0,
|
121 |
+
key="yt_player",
|
122 |
+
events=["onProgress"],
|
123 |
+
)
|
124 |
+
|
125 |
+
# Separate vocals
|
126 |
+
cols_before_sep = st.columns([2, 4, 2])
|
127 |
+
with cols_before_sep[1]:
|
128 |
+
execute_button = st.empty()
|
129 |
+
execute = execute_button.button(
|
130 |
+
"Confirm and remove vocals 🎤 🎶",
|
131 |
+
type="primary",
|
132 |
+
use_container_width=True,
|
133 |
+
)
|
134 |
+
if execute or sess.executed:
|
135 |
+
execute_button.empty()
|
136 |
+
player.empty()
|
137 |
+
if execute:
|
138 |
+
sess.executed = False
|
139 |
+
if sess.random_song is None:
|
140 |
+
if not sess.executed:
|
141 |
+
cols_spinners = st.columns([1, 2, 1])
|
142 |
+
with cols_spinners[1]:
|
143 |
+
with st.spinner(
|
144 |
+
"Separating vocals from music, it will take a while..."
|
145 |
+
):
|
146 |
+
sess.filename = download_audio_from_youtube(sess.url, in_path)
|
147 |
+
if sess.filename is None:
|
148 |
+
st.stop()
|
149 |
+
sess.url = None
|
150 |
+
filename = sess.filename
|
151 |
+
song = load_audio_segment(
|
152 |
+
in_path / filename, filename.split(".")[-1]
|
153 |
+
)
|
154 |
+
song.export(in_path / filename, format=filename.split(".")[-1])
|
155 |
+
model, device = load_model(pretrained_model="baseline.pth")
|
156 |
+
separate(
|
157 |
+
input=in_path / filename,
|
158 |
+
model=model,
|
159 |
+
device=device,
|
160 |
+
output_dir=out_path,
|
161 |
+
only_no_vocals=True,
|
162 |
+
)
|
163 |
+
selected_value = None
|
164 |
+
sess.last_dir = ".".join(sess.filename.split(".")[:-1])
|
165 |
+
sess.executed = True
|
166 |
+
else:
|
167 |
+
sess.executed = True
|
168 |
+
|
169 |
+
if sess.executed:
|
170 |
+
show_karaoke(out_path / "vocal_remover" / sess.last_dir / "no_vocals.mp3", player)
|
171 |
+
|
172 |
+
|
173 |
+
if __name__ == "__main__":
|
174 |
+
header()
|
175 |
+
body()
|
176 |
+
footer()
|
app/pages/Separate.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
from streamlit_option_menu import option_menu
|
6 |
+
|
7 |
+
from service.demucs_runner import separator
|
8 |
+
from helpers import (
|
9 |
+
load_audio_segment,
|
10 |
+
plot_audio,
|
11 |
+
st_local_audio,
|
12 |
+
url_is_valid,
|
13 |
+
)
|
14 |
+
|
15 |
+
from service.vocal_remover.runner import separate, load_model
|
16 |
+
|
17 |
+
from footer import footer
|
18 |
+
from header import header
|
19 |
+
|
20 |
+
label_sources = {
|
21 |
+
"no_vocals.mp3": "🎶 Instrumental",
|
22 |
+
"vocals.mp3": "🎤 Vocals",
|
23 |
+
"drums.mp3": "🥁 Drums",
|
24 |
+
"bass.mp3": "🎸 Bass",
|
25 |
+
"guitar.mp3": "🎸 Guitar",
|
26 |
+
"piano.mp3": "🎹 Piano",
|
27 |
+
"other.mp3": "🎶 Other",
|
28 |
+
}
|
29 |
+
|
30 |
+
extensions = ["mp3", "wav", "ogg", "flac"]
|
31 |
+
|
32 |
+
|
33 |
+
out_path = Path("/tmp")
|
34 |
+
in_path = Path("/tmp")
|
35 |
+
|
36 |
+
|
37 |
+
def reset_execution():
|
38 |
+
st.session_state.executed = False
|
39 |
+
|
40 |
+
|
41 |
+
def body():
|
42 |
+
filename = None
|
43 |
+
cols = st.columns([1, 3, 2, 1])
|
44 |
+
with cols[1]:
|
45 |
+
with st.columns([1, 5, 1])[1]:
|
46 |
+
option = option_menu(
|
47 |
+
menu_title=None,
|
48 |
+
options=["Upload File", "From URL"],
|
49 |
+
icons=["cloud-upload-fill", "link-45deg"],
|
50 |
+
orientation="horizontal",
|
51 |
+
styles={"container": {"width": "100%", "margin": "0px", "padding": "0px"}},
|
52 |
+
key="option_separate",
|
53 |
+
)
|
54 |
+
if option == "Upload File":
|
55 |
+
uploaded_file = st.file_uploader(
|
56 |
+
"Choose a file",
|
57 |
+
type=extensions,
|
58 |
+
key="file",
|
59 |
+
help="Supported formats: mp3, wav, ogg, flac.",
|
60 |
+
)
|
61 |
+
if uploaded_file is not None:
|
62 |
+
with open(in_path / uploaded_file.name, "wb") as f:
|
63 |
+
f.write(uploaded_file.getbuffer())
|
64 |
+
filename = uploaded_file.name
|
65 |
+
st_local_audio(in_path / filename, key="input_upload_file")
|
66 |
+
|
67 |
+
elif option == "From URL": # TODO: show examples
|
68 |
+
url = st.text_input(
|
69 |
+
"Paste the URL of the audio file",
|
70 |
+
key="url_input",
|
71 |
+
help="Supported formats: mp3, wav, ogg, flac.",
|
72 |
+
)
|
73 |
+
if url != "":
|
74 |
+
if url_is_valid(url):
|
75 |
+
with st.spinner("Downloading audio..."):
|
76 |
+
filename = url.split("/")[-1]
|
77 |
+
os.system(f"wget -O {in_path / filename} {url}")
|
78 |
+
st_local_audio(in_path / filename, key="input_from_url")
|
79 |
+
with cols[2]:
|
80 |
+
separation_mode = st.selectbox(
|
81 |
+
"Choose the separation mode",
|
82 |
+
[
|
83 |
+
"Vocals & Instrumental (Faster)",
|
84 |
+
"Vocals & Instrumental (High Quality, Slower)",
|
85 |
+
"Vocals, Drums, Bass & Other (Slower)",
|
86 |
+
"Vocal, Drums, Bass, Guitar, Piano & Other (Slowest)",
|
87 |
+
],
|
88 |
+
on_change=reset_execution(),
|
89 |
+
key="separation_mode",
|
90 |
+
)
|
91 |
+
if separation_mode == "Vocals & Instrumental (Faster)":
|
92 |
+
max_duration = 30
|
93 |
+
else:
|
94 |
+
max_duration = 15
|
95 |
+
|
96 |
+
if filename is not None:
|
97 |
+
song = load_audio_segment(in_path / filename, filename.split(".")[-1])
|
98 |
+
n_secs = round(len(song) / 1000)
|
99 |
+
if os.environ.get("ENV_LIMITATION", False):
|
100 |
+
with cols[2]:
|
101 |
+
start_time = st.number_input(
|
102 |
+
"Choose the start time",
|
103 |
+
min_value=0,
|
104 |
+
max_value=n_secs,
|
105 |
+
step=1,
|
106 |
+
value=0,
|
107 |
+
help=f"Maximum duration is {max_duration} seconds for this separation mode. Duplicate this space to remove any limit.",
|
108 |
+
format="%d",
|
109 |
+
)
|
110 |
+
st.session_state.start_time = start_time
|
111 |
+
end_time = min(start_time + max_duration, n_secs)
|
112 |
+
song = song[start_time * 1000 : end_time * 1000]
|
113 |
+
st.info(
|
114 |
+
f"Audio source will be processed from {start_time} to {end_time} seconds. Duplicate this space to remove any limit.",
|
115 |
+
icon="⏱",
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
start_time = 0
|
119 |
+
end_time = n_secs
|
120 |
+
with st.columns([1, 3, 1])[1]:
|
121 |
+
execute = st.button("Split Music 🎶", type="primary", use_container_width=True)
|
122 |
+
if execute or st.session_state.executed:
|
123 |
+
if execute:
|
124 |
+
st.session_state.executed = False
|
125 |
+
|
126 |
+
if not st.session_state.executed:
|
127 |
+
song.export(in_path / filename, format=filename.split(".")[-1])
|
128 |
+
with st.spinner("Separating source audio, it will take a while..."):
|
129 |
+
if separation_mode == "Vocals & Instrumental (Faster)":
|
130 |
+
model_name = "vocal_remover"
|
131 |
+
model, device = load_model(pretrained_model="baseline.pth")
|
132 |
+
separate(
|
133 |
+
input=in_path / filename,
|
134 |
+
model=model,
|
135 |
+
device=device,
|
136 |
+
output_dir=out_path,
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
stem = None
|
140 |
+
model_name = "htdemucs"
|
141 |
+
if (
|
142 |
+
separation_mode
|
143 |
+
== "Vocal, Drums, Bass, Guitar, Piano & Other (Slowest)"
|
144 |
+
):
|
145 |
+
model_name = "htdemucs_6s"
|
146 |
+
elif separation_mode == "Vocals & Instrumental (High Quality, Slower)":
|
147 |
+
stem = "vocals"
|
148 |
+
|
149 |
+
separator(
|
150 |
+
tracks=[in_path / filename],
|
151 |
+
out=out_path,
|
152 |
+
model=model_name,
|
153 |
+
shifts=1,
|
154 |
+
overlap=0.5,
|
155 |
+
stem=stem,
|
156 |
+
int24=False,
|
157 |
+
float32=False,
|
158 |
+
clip_mode="rescale",
|
159 |
+
mp3=True,
|
160 |
+
mp3_bitrate=320,
|
161 |
+
verbose=True,
|
162 |
+
start_time=start_time,
|
163 |
+
end_time=end_time,
|
164 |
+
)
|
165 |
+
last_dir = ".".join(filename.split(".")[:-1])
|
166 |
+
filename = None
|
167 |
+
st.session_state.executed = True
|
168 |
+
|
169 |
+
def get_sources(path):
|
170 |
+
sources = {}
|
171 |
+
for file in [
|
172 |
+
"no_vocals.mp3",
|
173 |
+
"vocals.mp3",
|
174 |
+
"drums.mp3",
|
175 |
+
"bass.mp3",
|
176 |
+
"guitar.mp3",
|
177 |
+
"piano.mp3",
|
178 |
+
"other.mp3",
|
179 |
+
]:
|
180 |
+
fullpath = path / file
|
181 |
+
if fullpath.exists():
|
182 |
+
sources[file] = fullpath
|
183 |
+
return sources
|
184 |
+
|
185 |
+
sources = get_sources(out_path / Path(model_name) / last_dir)
|
186 |
+
tab_sources = st.tabs([f"**{label_sources.get(k)}**" for k in sources.keys()])
|
187 |
+
for i, (file, pathname) in enumerate(sources.items()):
|
188 |
+
with tab_sources[i]:
|
189 |
+
cols = st.columns(2)
|
190 |
+
with cols[0]:
|
191 |
+
auseg = load_audio_segment(pathname, "mp3")
|
192 |
+
st.image(
|
193 |
+
plot_audio(auseg, title="", file=file),
|
194 |
+
use_column_width="always",
|
195 |
+
)
|
196 |
+
with cols[1]:
|
197 |
+
st_local_audio(pathname, key=f"output_{file}")
|
198 |
+
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
header()
|
202 |
+
body()
|
203 |
+
footer()
|
{lib → app/service}/__init__.py
RENAMED
File without changes
|
app/{demucs_runner.py → service/demucs_runner.py}
RENAMED
@@ -2,7 +2,7 @@ import argparse
|
|
2 |
import sys
|
3 |
from pathlib import Path
|
4 |
from typing import List
|
5 |
-
|
6 |
from dora.log import fatal
|
7 |
import torch as th
|
8 |
|
@@ -11,12 +11,14 @@ from demucs.audio import save_audio
|
|
11 |
from demucs.pretrained import get_model_from_args, ModelLoadingError
|
12 |
from demucs.separate import load_track
|
13 |
|
|
|
|
|
14 |
|
|
|
15 |
def separator(
|
16 |
tracks: List[Path],
|
17 |
out: Path,
|
18 |
model: str,
|
19 |
-
device: str,
|
20 |
shifts: int,
|
21 |
overlap: float,
|
22 |
stem: str,
|
@@ -25,27 +27,43 @@ def separator(
|
|
25 |
clip_mode: str,
|
26 |
mp3: bool,
|
27 |
mp3_bitrate: int,
|
28 |
-
jobs: int,
|
29 |
verbose: bool,
|
|
|
|
|
30 |
):
|
31 |
"""Separate the sources for the given tracks
|
32 |
|
33 |
Args:
|
34 |
tracks (Path): Path to tracks
|
35 |
-
out (Path): Folder where to put extracted tracks. A subfolder with the model name will be
|
|
|
36 |
model (str): Model name
|
37 |
-
|
38 |
-
|
|
|
39 |
overlap (float): Overlap
|
40 |
stem (str): Only separate audio into {STEM} and no_{STEM}.
|
41 |
int24 (bool): Save wav output as 24 bits wav.
|
42 |
float32 (bool): Save wav output as float32 (2x bigger).
|
43 |
-
clip_mode (str): Strategy for avoiding clipping: rescaling entire signal if necessary
|
|
|
44 |
mp3 (bool): Convert the output wavs to mp3.
|
45 |
mp3_bitrate (int): Bitrate of converted mp3.
|
46 |
-
jobs (int): Number of jobs. This can increase memory usage but will be much faster when multiple cores are available.
|
47 |
verbose (bool): Verbose
|
48 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
args = argparse.Namespace()
|
50 |
args.tracks = tracks
|
51 |
args.out = out
|
|
|
2 |
import sys
|
3 |
from pathlib import Path
|
4 |
from typing import List
|
5 |
+
import os
|
6 |
from dora.log import fatal
|
7 |
import torch as th
|
8 |
|
|
|
11 |
from demucs.pretrained import get_model_from_args, ModelLoadingError
|
12 |
from demucs.separate import load_track
|
13 |
|
14 |
+
import streamlit as st
|
15 |
+
|
16 |
|
17 |
+
@st.cache_data(show_spinner=False)
|
18 |
def separator(
|
19 |
tracks: List[Path],
|
20 |
out: Path,
|
21 |
model: str,
|
|
|
22 |
shifts: int,
|
23 |
overlap: float,
|
24 |
stem: str,
|
|
|
27 |
clip_mode: str,
|
28 |
mp3: bool,
|
29 |
mp3_bitrate: int,
|
|
|
30 |
verbose: bool,
|
31 |
+
*args,
|
32 |
+
**kwargs,
|
33 |
):
|
34 |
"""Separate the sources for the given tracks
|
35 |
|
36 |
Args:
|
37 |
tracks (Path): Path to tracks
|
38 |
+
out (Path): Folder where to put extracted tracks. A subfolder with the model name will be
|
39 |
+
created.
|
40 |
model (str): Model name
|
41 |
+
shifts (int): Number of random shifts for equivariant stabilization.
|
42 |
+
Increase separation time but improves quality for Demucs.
|
43 |
+
10 was used in the original paper.
|
44 |
overlap (float): Overlap
|
45 |
stem (str): Only separate audio into {STEM} and no_{STEM}.
|
46 |
int24 (bool): Save wav output as 24 bits wav.
|
47 |
float32 (bool): Save wav output as float32 (2x bigger).
|
48 |
+
clip_mode (str): Strategy for avoiding clipping: rescaling entire signal if necessary
|
49 |
+
(rescale) or hard clipping (clamp).
|
50 |
mp3 (bool): Convert the output wavs to mp3.
|
51 |
mp3_bitrate (int): Bitrate of converted mp3.
|
|
|
52 |
verbose (bool): Verbose
|
53 |
"""
|
54 |
+
|
55 |
+
if os.environ.get("LIMIT_CPU", False):
|
56 |
+
th.set_num_threads(1)
|
57 |
+
jobs = 1
|
58 |
+
else:
|
59 |
+
# Number of jobs. This can increase memory usage but will be much faster when
|
60 |
+
# multiple cores are available.
|
61 |
+
jobs = os.cpu_count()
|
62 |
+
|
63 |
+
if th.cuda.is_available():
|
64 |
+
device = "cuda"
|
65 |
+
else:
|
66 |
+
device = "cpu"
|
67 |
args = argparse.Namespace()
|
68 |
args.tracks = tracks
|
69 |
args.out = out
|
app/service/vocal_remover/__init__.py
ADDED
File without changes
|
app/service/vocal_remover/layers.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def crop_center(h1, h2):
|
7 |
+
h1_shape = h1.size()
|
8 |
+
h2_shape = h2.size()
|
9 |
+
|
10 |
+
if h1_shape[3] == h2_shape[3]:
|
11 |
+
return h1
|
12 |
+
elif h1_shape[3] < h2_shape[3]:
|
13 |
+
raise ValueError("h1_shape[3] must be greater than h2_shape[3]")
|
14 |
+
|
15 |
+
s_time = (h1_shape[3] - h2_shape[3]) // 2
|
16 |
+
e_time = s_time + h2_shape[3]
|
17 |
+
h1 = h1[:, :, :, s_time:e_time]
|
18 |
+
|
19 |
+
return h1
|
20 |
+
|
21 |
+
|
22 |
+
class Conv2DBNActiv(nn.Module):
|
23 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
24 |
+
super(Conv2DBNActiv, self).__init__()
|
25 |
+
self.conv = nn.Sequential(
|
26 |
+
nn.Conv2d(
|
27 |
+
nin,
|
28 |
+
nout,
|
29 |
+
kernel_size=ksize,
|
30 |
+
stride=stride,
|
31 |
+
padding=pad,
|
32 |
+
dilation=dilation,
|
33 |
+
bias=False,
|
34 |
+
),
|
35 |
+
nn.BatchNorm2d(nout),
|
36 |
+
activ(),
|
37 |
+
)
|
38 |
+
|
39 |
+
def __call__(self, x):
|
40 |
+
return self.conv(x)
|
41 |
+
|
42 |
+
|
43 |
+
class Encoder(nn.Module):
|
44 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
45 |
+
super(Encoder, self).__init__()
|
46 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
|
47 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
48 |
+
|
49 |
+
def __call__(self, x):
|
50 |
+
h = self.conv1(x)
|
51 |
+
h = self.conv2(h)
|
52 |
+
|
53 |
+
return h
|
54 |
+
|
55 |
+
|
56 |
+
class Decoder(nn.Module):
|
57 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
58 |
+
super(Decoder, self).__init__()
|
59 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
60 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
61 |
+
|
62 |
+
def __call__(self, x, skip=None):
|
63 |
+
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
64 |
+
|
65 |
+
if skip is not None:
|
66 |
+
skip = crop_center(skip, x)
|
67 |
+
x = torch.cat([x, skip], dim=1)
|
68 |
+
|
69 |
+
h = self.conv1(x)
|
70 |
+
# h = self.conv2(h)
|
71 |
+
|
72 |
+
if self.dropout is not None:
|
73 |
+
h = self.dropout(h)
|
74 |
+
|
75 |
+
return h
|
76 |
+
|
77 |
+
|
78 |
+
class ASPPModule(nn.Module):
|
79 |
+
def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
|
80 |
+
super(ASPPModule, self).__init__()
|
81 |
+
self.conv1 = nn.Sequential(
|
82 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
83 |
+
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ),
|
84 |
+
)
|
85 |
+
self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
|
86 |
+
self.conv3 = Conv2DBNActiv(nin, nout, 3, 1, dilations[0], dilations[0], activ=activ)
|
87 |
+
self.conv4 = Conv2DBNActiv(nin, nout, 3, 1, dilations[1], dilations[1], activ=activ)
|
88 |
+
self.conv5 = Conv2DBNActiv(nin, nout, 3, 1, dilations[2], dilations[2], activ=activ)
|
89 |
+
self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
|
90 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
_, _, h, w = x.size()
|
94 |
+
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode="bilinear", align_corners=True)
|
95 |
+
feat2 = self.conv2(x)
|
96 |
+
feat3 = self.conv3(x)
|
97 |
+
feat4 = self.conv4(x)
|
98 |
+
feat5 = self.conv5(x)
|
99 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
100 |
+
out = self.bottleneck(out)
|
101 |
+
|
102 |
+
if self.dropout is not None:
|
103 |
+
out = self.dropout(out)
|
104 |
+
|
105 |
+
return out
|
106 |
+
|
107 |
+
|
108 |
+
class LSTMModule(nn.Module):
|
109 |
+
def __init__(self, nin_conv, nin_lstm, nout_lstm):
|
110 |
+
super(LSTMModule, self).__init__()
|
111 |
+
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
|
112 |
+
self.lstm = nn.LSTM(input_size=nin_lstm, hidden_size=nout_lstm // 2, bidirectional=True)
|
113 |
+
self.dense = nn.Sequential(
|
114 |
+
nn.Linear(nout_lstm, nin_lstm), nn.BatchNorm1d(nin_lstm), nn.ReLU()
|
115 |
+
)
|
116 |
+
|
117 |
+
def forward(self, x):
|
118 |
+
N, _, nbins, nframes = x.size()
|
119 |
+
h = self.conv(x)[:, 0] # N, nbins, nframes
|
120 |
+
h = h.permute(2, 0, 1) # nframes, N, nbins
|
121 |
+
h, _ = self.lstm(h)
|
122 |
+
h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
|
123 |
+
h = h.reshape(nframes, N, 1, nbins)
|
124 |
+
h = h.permute(1, 2, 3, 0)
|
125 |
+
|
126 |
+
return h
|
app/service/vocal_remover/nets.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from app.service.vocal_remover import layers
|
6 |
+
|
7 |
+
|
8 |
+
class BaseNet(nn.Module):
|
9 |
+
def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
|
10 |
+
super(BaseNet, self).__init__()
|
11 |
+
self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1)
|
12 |
+
self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1)
|
13 |
+
self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1)
|
14 |
+
self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1)
|
15 |
+
self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1)
|
16 |
+
|
17 |
+
self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
|
18 |
+
|
19 |
+
self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
|
20 |
+
self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
|
21 |
+
self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
|
22 |
+
self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm)
|
23 |
+
self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
|
24 |
+
|
25 |
+
def __call__(self, x):
|
26 |
+
e1 = self.enc1(x)
|
27 |
+
e2 = self.enc2(e1)
|
28 |
+
e3 = self.enc3(e2)
|
29 |
+
e4 = self.enc4(e3)
|
30 |
+
e5 = self.enc5(e4)
|
31 |
+
|
32 |
+
h = self.aspp(e5)
|
33 |
+
|
34 |
+
h = self.dec4(h, e4)
|
35 |
+
h = self.dec3(h, e3)
|
36 |
+
h = self.dec2(h, e2)
|
37 |
+
h = torch.cat([h, self.lstm_dec2(h)], dim=1)
|
38 |
+
h = self.dec1(h, e1)
|
39 |
+
|
40 |
+
return h
|
41 |
+
|
42 |
+
|
43 |
+
class CascadedNet(nn.Module):
|
44 |
+
def __init__(self, n_fft, nout=32, nout_lstm=128):
|
45 |
+
super(CascadedNet, self).__init__()
|
46 |
+
self.max_bin = n_fft // 2
|
47 |
+
self.output_bin = n_fft // 2 + 1
|
48 |
+
self.nin_lstm = self.max_bin // 2
|
49 |
+
self.offset = 64
|
50 |
+
|
51 |
+
self.stg1_low_band_net = nn.Sequential(
|
52 |
+
BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
|
53 |
+
layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0),
|
54 |
+
)
|
55 |
+
self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2)
|
56 |
+
|
57 |
+
self.stg2_low_band_net = nn.Sequential(
|
58 |
+
BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
|
59 |
+
layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0),
|
60 |
+
)
|
61 |
+
self.stg2_high_band_net = BaseNet(
|
62 |
+
nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2
|
63 |
+
)
|
64 |
+
|
65 |
+
self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm)
|
66 |
+
|
67 |
+
self.out = nn.Conv2d(nout, 2, 1, bias=False)
|
68 |
+
self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
x = x[:, :, : self.max_bin]
|
72 |
+
|
73 |
+
bandw = x.size()[2] // 2
|
74 |
+
l1_in = x[:, :, :bandw]
|
75 |
+
h1_in = x[:, :, bandw:]
|
76 |
+
l1 = self.stg1_low_band_net(l1_in)
|
77 |
+
h1 = self.stg1_high_band_net(h1_in)
|
78 |
+
aux1 = torch.cat([l1, h1], dim=2)
|
79 |
+
|
80 |
+
l2_in = torch.cat([l1_in, l1], dim=1)
|
81 |
+
h2_in = torch.cat([h1_in, h1], dim=1)
|
82 |
+
l2 = self.stg2_low_band_net(l2_in)
|
83 |
+
h2 = self.stg2_high_band_net(h2_in)
|
84 |
+
aux2 = torch.cat([l2, h2], dim=2)
|
85 |
+
|
86 |
+
f3_in = torch.cat([x, aux1, aux2], dim=1)
|
87 |
+
f3 = self.stg3_full_band_net(f3_in)
|
88 |
+
|
89 |
+
mask = torch.sigmoid(self.out(f3))
|
90 |
+
mask = F.pad(
|
91 |
+
input=mask,
|
92 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
93 |
+
mode="replicate",
|
94 |
+
)
|
95 |
+
|
96 |
+
if self.training:
|
97 |
+
aux = torch.cat([aux1, aux2], dim=1)
|
98 |
+
aux = torch.sigmoid(self.aux_out(aux))
|
99 |
+
aux = F.pad(
|
100 |
+
input=aux,
|
101 |
+
pad=(0, 0, 0, self.output_bin - aux.size()[2]),
|
102 |
+
mode="replicate",
|
103 |
+
)
|
104 |
+
return mask, aux
|
105 |
+
else:
|
106 |
+
return mask
|
107 |
+
|
108 |
+
def predict_mask(self, x):
|
109 |
+
mask = self.forward(x)
|
110 |
+
|
111 |
+
if self.offset > 0:
|
112 |
+
mask = mask[:, :, :, self.offset : -self.offset]
|
113 |
+
assert mask.size()[3] > 0
|
114 |
+
|
115 |
+
return mask
|
116 |
+
|
117 |
+
def predict(self, x):
|
118 |
+
mask = self.forward(x)
|
119 |
+
pred_mag = x * mask
|
120 |
+
|
121 |
+
if self.offset > 0:
|
122 |
+
pred_mag = pred_mag[:, :, :, self.offset : -self.offset]
|
123 |
+
assert pred_mag.size()[3] > 0
|
124 |
+
|
125 |
+
return pred_mag
|
app/service/vocal_remover/runner.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
import soundfile as sf
|
6 |
+
import torch
|
7 |
+
from stqdm import stqdm
|
8 |
+
import streamlit as st
|
9 |
+
from pydub import AudioSegment
|
10 |
+
|
11 |
+
from app.service.vocal_remover import nets
|
12 |
+
|
13 |
+
|
14 |
+
if os.environ.get("LIMIT_CPU", False):
|
15 |
+
torch.set_num_threads(1)
|
16 |
+
|
17 |
+
|
18 |
+
def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32):
|
19 |
+
if min_range < fade_size * 2:
|
20 |
+
raise ValueError("min_range must be >= fade_size * 2")
|
21 |
+
|
22 |
+
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
|
23 |
+
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
24 |
+
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
25 |
+
artifact_idx = np.where(end_idx - start_idx > min_range)[0]
|
26 |
+
weight = np.zeros_like(y_mask)
|
27 |
+
if len(artifact_idx) > 0:
|
28 |
+
start_idx = start_idx[artifact_idx]
|
29 |
+
end_idx = end_idx[artifact_idx]
|
30 |
+
old_e = None
|
31 |
+
for s, e in zip(start_idx, end_idx):
|
32 |
+
if old_e is not None and s - old_e < fade_size:
|
33 |
+
s = old_e - fade_size * 2
|
34 |
+
|
35 |
+
if s != 0:
|
36 |
+
weight[:, :, s : s + fade_size] = np.linspace(0, 1, fade_size)
|
37 |
+
else:
|
38 |
+
s -= fade_size
|
39 |
+
|
40 |
+
if e != y_mask.shape[2]:
|
41 |
+
weight[:, :, e - fade_size : e] = np.linspace(1, 0, fade_size)
|
42 |
+
else:
|
43 |
+
e += fade_size
|
44 |
+
|
45 |
+
weight[:, :, s + fade_size : e - fade_size] = 1
|
46 |
+
old_e = e
|
47 |
+
|
48 |
+
v_mask = 1 - y_mask
|
49 |
+
y_mask += weight * v_mask
|
50 |
+
|
51 |
+
return y_mask
|
52 |
+
|
53 |
+
|
54 |
+
def make_padding(width, cropsize, offset):
|
55 |
+
left = offset
|
56 |
+
roi_size = cropsize - offset * 2
|
57 |
+
if roi_size == 0:
|
58 |
+
roi_size = cropsize
|
59 |
+
right = roi_size - (width % roi_size) + left
|
60 |
+
|
61 |
+
return left, right, roi_size
|
62 |
+
|
63 |
+
|
64 |
+
def wave_to_spectrogram(wave, hop_length, n_fft):
|
65 |
+
wave_left = np.asfortranarray(wave[0])
|
66 |
+
wave_right = np.asfortranarray(wave[1])
|
67 |
+
|
68 |
+
spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length)
|
69 |
+
spec_right = librosa.stft(wave_right, n_fft=n_fft, hop_length=hop_length)
|
70 |
+
spec = np.asfortranarray([spec_left, spec_right])
|
71 |
+
|
72 |
+
return spec
|
73 |
+
|
74 |
+
|
75 |
+
def spectrogram_to_wave(spec, hop_length=1024):
|
76 |
+
if spec.ndim == 2:
|
77 |
+
wave = librosa.istft(spec, hop_length=hop_length)
|
78 |
+
elif spec.ndim == 3:
|
79 |
+
spec_left = np.asfortranarray(spec[0])
|
80 |
+
spec_right = np.asfortranarray(spec[1])
|
81 |
+
|
82 |
+
wave_left = librosa.istft(spec_left, hop_length=hop_length)
|
83 |
+
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
84 |
+
wave = np.asfortranarray([wave_left, wave_right])
|
85 |
+
|
86 |
+
return wave
|
87 |
+
|
88 |
+
|
89 |
+
class Separator(object):
|
90 |
+
def __init__(self, model, device, batchsize, cropsize, postprocess=False, progress_bar=None):
|
91 |
+
self.model = model
|
92 |
+
self.offset = model.offset
|
93 |
+
self.device = device
|
94 |
+
self.batchsize = batchsize
|
95 |
+
self.cropsize = cropsize
|
96 |
+
self.postprocess = postprocess
|
97 |
+
self.progress_bar = progress_bar
|
98 |
+
|
99 |
+
def _separate(self, X_mag_pad, roi_size):
|
100 |
+
X_dataset = []
|
101 |
+
patches = (X_mag_pad.shape[2] - 2 * self.offset) // roi_size
|
102 |
+
for i in range(patches):
|
103 |
+
start = i * roi_size
|
104 |
+
X_mag_crop = X_mag_pad[:, :, start : start + self.cropsize]
|
105 |
+
X_dataset.append(X_mag_crop)
|
106 |
+
|
107 |
+
X_dataset = np.asarray(X_dataset)
|
108 |
+
|
109 |
+
self.model.eval()
|
110 |
+
with torch.no_grad():
|
111 |
+
mask = []
|
112 |
+
# To reduce the overhead, dataloader is not used.
|
113 |
+
for i in stqdm(
|
114 |
+
range(0, patches, self.batchsize),
|
115 |
+
st_container=self.progress_bar,
|
116 |
+
gui=False,
|
117 |
+
):
|
118 |
+
X_batch = X_dataset[i : i + self.batchsize]
|
119 |
+
X_batch = torch.from_numpy(X_batch).to(self.device)
|
120 |
+
|
121 |
+
pred = self.model.predict_mask(X_batch)
|
122 |
+
|
123 |
+
pred = pred.detach().cpu().numpy()
|
124 |
+
pred = np.concatenate(pred, axis=2)
|
125 |
+
mask.append(pred)
|
126 |
+
|
127 |
+
mask = np.concatenate(mask, axis=2)
|
128 |
+
|
129 |
+
return mask
|
130 |
+
|
131 |
+
def _preprocess(self, X_spec):
|
132 |
+
X_mag = np.abs(X_spec)
|
133 |
+
X_phase = np.angle(X_spec)
|
134 |
+
|
135 |
+
return X_mag, X_phase
|
136 |
+
|
137 |
+
def _postprocess(self, mask, X_mag, X_phase):
|
138 |
+
if self.postprocess:
|
139 |
+
mask = merge_artifacts(mask)
|
140 |
+
|
141 |
+
y_spec = mask * X_mag * np.exp(1.0j * X_phase)
|
142 |
+
v_spec = (1 - mask) * X_mag * np.exp(1.0j * X_phase)
|
143 |
+
|
144 |
+
return y_spec, v_spec
|
145 |
+
|
146 |
+
def separate(self, X_spec):
|
147 |
+
X_mag, X_phase = self._preprocess(X_spec)
|
148 |
+
|
149 |
+
n_frame = X_mag.shape[2]
|
150 |
+
pad_l, pad_r, roi_size = make_padding(n_frame, self.cropsize, self.offset)
|
151 |
+
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
|
152 |
+
X_mag_pad /= X_mag_pad.max()
|
153 |
+
|
154 |
+
mask = self._separate(X_mag_pad, roi_size)
|
155 |
+
mask = mask[:, :, :n_frame]
|
156 |
+
|
157 |
+
y_spec, v_spec = self._postprocess(mask, X_mag, X_phase)
|
158 |
+
|
159 |
+
return y_spec, v_spec
|
160 |
+
|
161 |
+
|
162 |
+
@st.cache_resource(show_spinner=False)
|
163 |
+
def load_model(pretrained_model, n_fft=2048):
|
164 |
+
model = nets.CascadedNet(n_fft, 32, 128)
|
165 |
+
if torch.cuda.is_available():
|
166 |
+
device = torch.device("cuda:0")
|
167 |
+
model.to(device)
|
168 |
+
# elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
169 |
+
# device = torch.device("mps")
|
170 |
+
# model.to(device)
|
171 |
+
else:
|
172 |
+
device = torch.device("cpu")
|
173 |
+
model.load_state_dict(torch.load(pretrained_model, map_location=device))
|
174 |
+
return model, device
|
175 |
+
|
176 |
+
|
177 |
+
# @st.cache_data(show_spinner=False)
|
178 |
+
def separate(
|
179 |
+
input,
|
180 |
+
model,
|
181 |
+
device,
|
182 |
+
output_dir,
|
183 |
+
batchsize=4,
|
184 |
+
cropsize=256,
|
185 |
+
postprocess=False,
|
186 |
+
hop_length=1024,
|
187 |
+
n_fft=2048,
|
188 |
+
sr=44100,
|
189 |
+
progress_bar=None,
|
190 |
+
only_no_vocals=False,
|
191 |
+
):
|
192 |
+
X, sr = librosa.load(input, sr=sr, mono=False, dtype=np.float32, res_type="kaiser_fast")
|
193 |
+
basename = os.path.splitext(os.path.basename(input))[0]
|
194 |
+
|
195 |
+
if X.ndim == 1:
|
196 |
+
# mono to stereo
|
197 |
+
X = np.asarray([X, X])
|
198 |
+
|
199 |
+
X_spec = wave_to_spectrogram(X, hop_length, n_fft)
|
200 |
+
|
201 |
+
with torch.no_grad():
|
202 |
+
sp = Separator(model, device, batchsize, cropsize, postprocess, progress_bar=progress_bar)
|
203 |
+
y_spec, v_spec = sp.separate(X_spec)
|
204 |
+
|
205 |
+
base_dir = f"{output_dir}/vocal_remover/{basename}"
|
206 |
+
os.makedirs(base_dir, exist_ok=True)
|
207 |
+
|
208 |
+
wave = spectrogram_to_wave(y_spec, hop_length=hop_length)
|
209 |
+
try:
|
210 |
+
sf.write(f"{base_dir}/no_vocals.mp3", wave.T, sr)
|
211 |
+
except Exception:
|
212 |
+
logging.error("Failed to write no_vocals.mp3, trying pydub...")
|
213 |
+
pydub_write(wave, f"{base_dir}/no_vocals.mp3", sr)
|
214 |
+
if only_no_vocals:
|
215 |
+
return
|
216 |
+
wave = spectrogram_to_wave(v_spec, hop_length=hop_length)
|
217 |
+
try:
|
218 |
+
sf.write(f"{base_dir}/vocals.mp3", wave.T, sr)
|
219 |
+
except Exception:
|
220 |
+
logging.error("Failed to write vocals.mp3, trying pydub...")
|
221 |
+
pydub_write(wave, f"{base_dir}/vocals.mp3", sr)
|
222 |
+
|
223 |
+
|
224 |
+
def pydub_write(wave, output_path, frame_rate, audio_format="mp3"):
|
225 |
+
# Ensure the wave data is in the right format for pydub (mono and 16-bit depth)
|
226 |
+
wave_16bit = (wave * 32767).astype(np.int16)
|
227 |
+
|
228 |
+
audio_segment = AudioSegment(
|
229 |
+
wave_16bit.tobytes(),
|
230 |
+
frame_rate=frame_rate,
|
231 |
+
sample_width=wave_16bit.dtype.itemsize,
|
232 |
+
channels=1,
|
233 |
+
)
|
234 |
+
audio_segment.export(output_path, format=audio_format)
|
app/service/youtube.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
import yt_dlp
|
4 |
+
import string
|
5 |
+
import time
|
6 |
+
import re
|
7 |
+
import streamlit as st
|
8 |
+
from pytube import Search
|
9 |
+
|
10 |
+
|
11 |
+
def _sanitize_filename(filename):
|
12 |
+
safe_chars = "-_.() %s%s" % (
|
13 |
+
re.escape(string.ascii_letters),
|
14 |
+
re.escape(string.digits),
|
15 |
+
)
|
16 |
+
safe_filename = re.sub(f"[^{safe_chars}]", "_", filename)
|
17 |
+
return safe_filename.strip()
|
18 |
+
|
19 |
+
|
20 |
+
@st.cache_data(show_spinner=False)
|
21 |
+
def download_audio_from_youtube(url, output_path):
|
22 |
+
if not os.path.exists(output_path):
|
23 |
+
os.makedirs(output_path)
|
24 |
+
|
25 |
+
with yt_dlp.YoutubeDL() as ydl:
|
26 |
+
info_dict = ydl.extract_info(url, download=False)
|
27 |
+
if info_dict.get("duration") > 360:
|
28 |
+
st.error("Song is too long. Please use a song no longer than 6 minutes.")
|
29 |
+
return
|
30 |
+
video_title = info_dict.get("title", None)
|
31 |
+
video_title = _sanitize_filename(video_title)
|
32 |
+
ydl_opts = {
|
33 |
+
"format": "bestaudio/best",
|
34 |
+
"postprocessors": [
|
35 |
+
{
|
36 |
+
"key": "FFmpegExtractAudio",
|
37 |
+
"preferredcodec": "mp3",
|
38 |
+
"preferredquality": "192",
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"outtmpl": os.path.join(output_path, video_title),
|
42 |
+
#'quiet': True,
|
43 |
+
}
|
44 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
45 |
+
ydl.download([url])
|
46 |
+
return f"{video_title}.mp3"
|
47 |
+
|
48 |
+
|
49 |
+
@st.cache_data(show_spinner=False)
|
50 |
+
def query_youtube(query: str) -> Search:
|
51 |
+
return Search(query)
|
52 |
+
|
53 |
+
|
54 |
+
def search_youtube(query: str) -> List:
|
55 |
+
if len(query) > 3:
|
56 |
+
time.sleep(0.5)
|
57 |
+
search = query_youtube(query + " lyrics")
|
58 |
+
st.session_state.search_results = search.results
|
59 |
+
video_options = [video.title for video in st.session_state.search_results]
|
60 |
+
st.session_state.video_options = video_options
|
61 |
+
else:
|
62 |
+
video_options = []
|
63 |
+
return video_options
|
64 |
+
|
65 |
+
|
66 |
+
def get_youtube_url(title: str) -> str:
|
67 |
+
video = st.session_state.search_results[st.session_state.video_options.index(title)]
|
68 |
+
return video.embed_url
|
69 |
+
|
70 |
+
|
71 |
+
def check_if_is_youtube_url(url: str) -> bool:
|
72 |
+
return url.startswith("http")
|
app/sidebar.py
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
text = """
|
2 |
-
<b>🎶 Music Source Splitter</b> is a web app that allows you to separate the vocals and the instrumental of a song.
|
3 |
-
<hr>
|
4 |
-
<h3>How does it work?</h3>
|
5 |
-
The app uses a pretrained model called Hybrid Spectrogram and Waveform Source Separation from <a href="https://github.com/facebookresearch/demucs">facebook/htdemucs</a>.
|
6 |
-
<br><br>
|
7 |
-
<h3>Where can I find the code?</h3>
|
8 |
-
The code for this app is available both on <a href="https://github.com/fabiogra/st-music-splitter">GitHub</a> and <a href="https://huggingface.co/spaces/fabiogra/st-music-splitter/tree/main">HuggingFace</a>.
|
9 |
-
<br><br>
|
10 |
-
<h3>Contact me</h3>
|
11 |
-
Contact me on <a href="https://twitter.com/grsFabio">Twitter</a> or on <a href="https://www.linkedin.com/in/fabio-grasso/">LinkedIn</a> if you have any questions or feedback.
|
12 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/style.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_font_title = "Monoton"
|
2 |
+
_font_subtitle = "Exo"
|
3 |
+
|
4 |
+
CSS = (
|
5 |
+
"""
|
6 |
+
<!-- Add the font link from Google Fonts -->
|
7 |
+
<link href="https://fonts.googleapis.com/css2?family="""
|
8 |
+
+ _font_title
|
9 |
+
+ """&display=swap" rel="stylesheet">
|
10 |
+
<link href="https://fonts.googleapis.com/css2?family="""
|
11 |
+
+ _font_subtitle
|
12 |
+
+ """&display=swap" rel="stylesheet">
|
13 |
+
|
14 |
+
<style>
|
15 |
+
/* Remove the streamlit header */
|
16 |
+
header[data-testid="stHeader"] {
|
17 |
+
display: none;
|
18 |
+
}
|
19 |
+
/* Remove the sidebar menu */
|
20 |
+
div[data-testid="collapsedControl"]{
|
21 |
+
display: none;
|
22 |
+
}
|
23 |
+
/* Background */
|
24 |
+
.css-z5fcl4 {
|
25 |
+
padding: 0.5rem;
|
26 |
+
padding-top: 0rem;
|
27 |
+
}
|
28 |
+
|
29 |
+
/* Distances between the title and the image in mobile */
|
30 |
+
.css-1uifejx.e1tzin5v1 {
|
31 |
+
margin-bottom: 0px;
|
32 |
+
padding-bottom: 0px;
|
33 |
+
}
|
34 |
+
h1 {
|
35 |
+
padding-top: 0px;
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
/* Center the image within its container */
|
40 |
+
.css-1kyxreq {
|
41 |
+
justify-content: center;
|
42 |
+
}
|
43 |
+
|
44 |
+
/* Remove fixed width from the image container */
|
45 |
+
.css-1kyxreq.etr89bj2 {
|
46 |
+
width: 100% !important;
|
47 |
+
}
|
48 |
+
|
49 |
+
/* Center the title */
|
50 |
+
.css-k7vsyb {
|
51 |
+
text-align: center;
|
52 |
+
}
|
53 |
+
|
54 |
+
/* Hide the anchor button */
|
55 |
+
.css-zt5igj.e16nr0p33 a {
|
56 |
+
display: none;
|
57 |
+
}
|
58 |
+
/* Hide the full screen button */
|
59 |
+
.css-e370rw.e19lei0e1 {
|
60 |
+
display: none;
|
61 |
+
}
|
62 |
+
.css-6awftf.e19lei0e1 {
|
63 |
+
display: none;
|
64 |
+
}
|
65 |
+
|
66 |
+
/* Desktop */
|
67 |
+
@media (min-width: 640px) {
|
68 |
+
.stMarkdown {
|
69 |
+
max-width: 100%;
|
70 |
+
width: auto;
|
71 |
+
display: inline-block;
|
72 |
+
}
|
73 |
+
/* Dynamically add space between the image and the title */
|
74 |
+
.css-1kyxreq {
|
75 |
+
justify-content: right;
|
76 |
+
}
|
77 |
+
}
|
78 |
+
|
79 |
+
/* Add space after the image and the title */
|
80 |
+
.css-1a32fsj {
|
81 |
+
margin-right: 0px;
|
82 |
+
}
|
83 |
+
|
84 |
+
/* Apply the futuristic font to the text title*/
|
85 |
+
#moseca {
|
86 |
+
font-family: '"""
|
87 |
+
+ _font_title
|
88 |
+
+ """', sans-serif;
|
89 |
+
font-size: 3rem;
|
90 |
+
text-align: center;
|
91 |
+
/* Align the text to the center of the box */
|
92 |
+
align-items: center;
|
93 |
+
/* Set the line height to the same as the height of the box */
|
94 |
+
line-height: 3.5rem;
|
95 |
+
margin-bottom: -1rem;
|
96 |
+
}
|
97 |
+
|
98 |
+
/* subtitle */
|
99 |
+
.css-5rimss p, .css-nahz7x p {
|
100 |
+
font-family: """
|
101 |
+
+ _font_subtitle
|
102 |
+
+ """, sans-serif;
|
103 |
+
font-size: 0.8rem;
|
104 |
+
text-align: center;
|
105 |
+
}
|
106 |
+
|
107 |
+
/* Desktop */
|
108 |
+
@media (min-width: 640px) {
|
109 |
+
.css-zt5igj, .css-nahz7x p {
|
110 |
+
text-align: left;
|
111 |
+
}
|
112 |
+
.css-5rimss p {
|
113 |
+
text-align: left;
|
114 |
+
}
|
115 |
+
}
|
116 |
+
|
117 |
+
.st-af {
|
118 |
+
align-items: center;
|
119 |
+
padding-right: 2rem;
|
120 |
+
}
|
121 |
+
|
122 |
+
/* Remove the gap around the player */
|
123 |
+
.css-434r0z {
|
124 |
+
gap: 0rem;
|
125 |
+
}
|
126 |
+
|
127 |
+
|
128 |
+
</style>
|
129 |
+
|
130 |
+
"""
|
131 |
+
)
|
img/bmc-button.png
ADDED
img/image_stems.png
ADDED
img/karaoke_fun.png
ADDED
img/logo_moseca.png
ADDED
img/state-of-art.png
ADDED
lib/st_audiorec/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
lib/st_audiorec/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|
lib/st_audiorec/frontend/.DS_Store
DELETED
Binary file (8.2 kB)
|
|
lib/st_audiorec/frontend/.env
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
# Run the component's dev server on :3001
|
2 |
-
# (The Streamlit dev server already runs on :3000)
|
3 |
-
PORT=3001
|
4 |
-
|
5 |
-
# Don't automatically open the web browser on `npm run start`.
|
6 |
-
BROWSER=none
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/st_audiorec/frontend/.prettierrc
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"endOfLine": "lf",
|
3 |
-
"semi": false,
|
4 |
-
"trailingComma": "es5"
|
5 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
lib/st_audiorec/frontend/build/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
lib/st_audiorec/frontend/build/asset-manifest.json
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"files": {
|
3 |
-
"main.js": "./static/js/main.833ba252.chunk.js",
|
4 |
-
"main.js.map": "./static/js/main.833ba252.chunk.js.map",
|
5 |
-
"runtime-main.js": "./static/js/runtime-main.11ec9aca.js",
|
6 |
-
"runtime-main.js.map": "./static/js/runtime-main.11ec9aca.js.map",
|
7 |
-
"static/css/2.bfbf028b.chunk.css": "./static/css/2.bfbf028b.chunk.css",
|
8 |
-
"static/js/2.270b84d8.chunk.js": "./static/js/2.270b84d8.chunk.js",
|
9 |
-
"static/js/2.270b84d8.chunk.js.map": "./static/js/2.270b84d8.chunk.js.map",
|
10 |
-
"index.html": "./index.html",
|
11 |
-
"precache-manifest.4829c060d313d0b0d13d9af3b0180289.js": "./precache-manifest.4829c060d313d0b0d13d9af3b0180289.js",
|
12 |
-
"service-worker.js": "./service-worker.js",
|
13 |
-
"static/css/2.bfbf028b.chunk.css.map": "./static/css/2.bfbf028b.chunk.css.map",
|
14 |
-
"static/js/2.270b84d8.chunk.js.LICENSE.txt": "./static/js/2.270b84d8.chunk.js.LICENSE.txt"
|
15 |
-
},
|
16 |
-
"entrypoints": [
|
17 |
-
"static/js/runtime-main.11ec9aca.js",
|
18 |
-
"static/css/2.bfbf028b.chunk.css",
|
19 |
-
"static/js/2.270b84d8.chunk.js",
|
20 |
-
"static/js/main.833ba252.chunk.js"
|
21 |
-
]
|
22 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/st_audiorec/frontend/build/bootstrap.min.css
DELETED
The diff for this file is too large to render.
See raw diff
|
|
lib/st_audiorec/frontend/build/index.html
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
<!doctype html><html lang="en"><head><title>Streamlit Audio Recorder Component</title><meta charset="UTF-8"/><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="theme-color" content="#000000"/><meta name="description" content="Streamlit Audio Recorder Component"/><link rel="stylesheet" href="bootstrap.min.css"/><link rel="stylesheet" href="./styles.css"/><link href="./static/css/2.bfbf028b.chunk.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div><script>!function(e){function t(t){for(var n,l,a=t[0],p=t[1],i=t[2],c=0,s=[];c<a.length;c++)l=a[c],Object.prototype.hasOwnProperty.call(o,l)&&o[l]&&s.push(o[l][0]),o[l]=0;for(n in p)Object.prototype.hasOwnProperty.call(p,n)&&(e[n]=p[n]);for(f&&f(t);s.length;)s.shift()();return u.push.apply(u,i||[]),r()}function r(){for(var e,t=0;t<u.length;t++){for(var r=u[t],n=!0,a=1;a<r.length;a++){var p=r[a];0!==o[p]&&(n=!1)}n&&(u.splice(t--,1),e=l(l.s=r[0]))}return e}var n={},o={1:0},u=[];function l(t){if(n[t])return n[t].exports;var r=n[t]={i:t,l:!1,exports:{}};return e[t].call(r.exports,r,r.exports,l),r.l=!0,r.exports}l.m=e,l.c=n,l.d=function(e,t,r){l.o(e,t)||Object.defineProperty(e,t,{enumerable:!0,get:r})},l.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},l.t=function(e,t){if(1&t&&(e=l(e)),8&t)return e;if(4&t&&"object"==typeof e&&e&&e.__esModule)return e;var r=Object.create(null);if(l.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:e}),2&t&&"string"!=typeof e)for(var n in e)l.d(r,n,function(t){return e[t]}.bind(null,n));return r},l.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return l.d(t,"a",t),t},l.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},l.p="./";var a=this.webpackJsonpstreamlit_component_template=this.webpackJsonpstreamlit_component_template||[],p=a.push.bind(a);a.push=t,a=a.slice();for(var i=0;i<a.length;i++)t(a[i]);var f=p;r()}([])</script><script src="./static/js/2.270b84d8.chunk.js"></script><script src="./static/js/main.833ba252.chunk.js"></script></body></html>
|
|
|
|
lib/st_audiorec/frontend/build/precache-manifest.4829c060d313d0b0d13d9af3b0180289.js
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
self.__precacheManifest = (self.__precacheManifest || []).concat([
|
2 |
-
{
|
3 |
-
"revision": "de27ef444ab2ed520b64cb0c988a478a",
|
4 |
-
"url": "./index.html"
|
5 |
-
},
|
6 |
-
{
|
7 |
-
"revision": "1a47c80c81698454dced",
|
8 |
-
"url": "./static/css/2.bfbf028b.chunk.css"
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"revision": "1a47c80c81698454dced",
|
12 |
-
"url": "./static/js/2.270b84d8.chunk.js"
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"revision": "3fc7fb5bfeeec1534560a2c962e360a7",
|
16 |
-
"url": "./static/js/2.270b84d8.chunk.js.LICENSE.txt"
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"revision": "3478f4c246f37a2cbb97",
|
20 |
-
"url": "./static/js/main.833ba252.chunk.js"
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"revision": "7c26bca7e16783d14d15",
|
24 |
-
"url": "./static/js/runtime-main.11ec9aca.js"
|
25 |
-
}
|
26 |
-
]);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/st_audiorec/frontend/build/service-worker.js
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
/**
|
2 |
-
* Welcome to your Workbox-powered service worker!
|
3 |
-
*
|
4 |
-
* You'll need to register this file in your web app and you should
|
5 |
-
* disable HTTP caching for this file too.
|
6 |
-
* See https://goo.gl/nhQhGp
|
7 |
-
*
|
8 |
-
* The rest of the code is auto-generated. Please don't update this file
|
9 |
-
* directly; instead, make changes to your Workbox build configuration
|
10 |
-
* and re-run your build process.
|
11 |
-
* See https://goo.gl/2aRDsh
|
12 |
-
*/
|
13 |
-
|
14 |
-
importScripts("https://storage.googleapis.com/workbox-cdn/releases/4.3.1/workbox-sw.js");
|
15 |
-
|
16 |
-
importScripts(
|
17 |
-
"./precache-manifest.4829c060d313d0b0d13d9af3b0180289.js"
|
18 |
-
);
|
19 |
-
|
20 |
-
self.addEventListener('message', (event) => {
|
21 |
-
if (event.data && event.data.type === 'SKIP_WAITING') {
|
22 |
-
self.skipWaiting();
|
23 |
-
}
|
24 |
-
});
|
25 |
-
|
26 |
-
workbox.core.clientsClaim();
|
27 |
-
|
28 |
-
/**
|
29 |
-
* The workboxSW.precacheAndRoute() method efficiently caches and responds to
|
30 |
-
* requests for URLs in the manifest.
|
31 |
-
* See https://goo.gl/S9QRab
|
32 |
-
*/
|
33 |
-
self.__precacheManifest = [].concat(self.__precacheManifest || []);
|
34 |
-
workbox.precaching.precacheAndRoute(self.__precacheManifest, {});
|
35 |
-
|
36 |
-
workbox.routing.registerNavigationRoute(workbox.precaching.getCacheKeyForURL("./index.html"), {
|
37 |
-
|
38 |
-
blacklist: [/^\/_/,/\/[^/?]+\.[^/]+$/],
|
39 |
-
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/st_audiorec/frontend/build/static/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
lib/st_audiorec/frontend/build/static/css/2.bfbf028b.chunk.css
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
._3ybTi{margin:2em;padding:.5em;border:2px solid #000;font-size:2em;text-align:center}
|
2 |
-
/*# sourceMappingURL=2.bfbf028b.chunk.css.map */
|
|
|
|
|
|
lib/st_audiorec/frontend/build/static/css/2.bfbf028b.chunk.css.map
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"version":3,"sources":["index.css"],"names":[],"mappings":"AAEA,QACE,UAAW,CACX,YAAc,CACd,qBAAsB,CACtB,aAAc,CACd,iBACF","file":"2.bfbf028b.chunk.css","sourcesContent":["/* add css module styles here (optional) */\n\n._3ybTi {\n margin: 2em;\n padding: 0.5em;\n border: 2px solid #000;\n font-size: 2em;\n text-align: center;\n}\n"]}
|
|
|
|
lib/st_audiorec/frontend/build/static/js/2.270b84d8.chunk.js
DELETED
The diff for this file is too large to render.
See raw diff
|
|
lib/st_audiorec/frontend/build/static/js/2.270b84d8.chunk.js.LICENSE.txt
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
/*
|
2 |
-
object-assign
|
3 |
-
(c) Sindre Sorhus
|
4 |
-
@license MIT
|
5 |
-
*/
|
6 |
-
|
7 |
-
/**
|
8 |
-
* @license
|
9 |
-
* Copyright 2018-2021 Streamlit Inc.
|
10 |
-
*
|
11 |
-
* Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
-
* you may not use this file except in compliance with the License.
|
13 |
-
* You may obtain a copy of the License at
|
14 |
-
*
|
15 |
-
* http://www.apache.org/licenses/LICENSE-2.0
|
16 |
-
*
|
17 |
-
* Unless required by applicable law or agreed to in writing, software
|
18 |
-
* distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
-
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
-
* See the License for the specific language governing permissions and
|
21 |
-
* limitations under the License.
|
22 |
-
*/
|
23 |
-
|
24 |
-
/** @license React v0.19.1
|
25 |
-
* scheduler.production.min.js
|
26 |
-
*
|
27 |
-
* Copyright (c) Facebook, Inc. and its affiliates.
|
28 |
-
*
|
29 |
-
* This source code is licensed under the MIT license found in the
|
30 |
-
* LICENSE file in the root directory of this source tree.
|
31 |
-
*/
|
32 |
-
|
33 |
-
/** @license React v16.13.1
|
34 |
-
* react-is.production.min.js
|
35 |
-
*
|
36 |
-
* Copyright (c) Facebook, Inc. and its affiliates.
|
37 |
-
*
|
38 |
-
* This source code is licensed under the MIT license found in the
|
39 |
-
* LICENSE file in the root directory of this source tree.
|
40 |
-
*/
|
41 |
-
|
42 |
-
/** @license React v16.14.0
|
43 |
-
* react-dom.production.min.js
|
44 |
-
*
|
45 |
-
* Copyright (c) Facebook, Inc. and its affiliates.
|
46 |
-
*
|
47 |
-
* This source code is licensed under the MIT license found in the
|
48 |
-
* LICENSE file in the root directory of this source tree.
|
49 |
-
*/
|
50 |
-
|
51 |
-
/** @license React v16.14.0
|
52 |
-
* react.production.min.js
|
53 |
-
*
|
54 |
-
* Copyright (c) Facebook, Inc. and its affiliates.
|
55 |
-
*
|
56 |
-
* This source code is licensed under the MIT license found in the
|
57 |
-
* LICENSE file in the root directory of this source tree.
|
58 |
-
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/st_audiorec/frontend/build/static/js/2.270b84d8.chunk.js.map
DELETED
The diff for this file is too large to render.
See raw diff
|
|
lib/st_audiorec/frontend/build/static/js/main.833ba252.chunk.js
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
(this.webpackJsonpstreamlit_component_template=this.webpackJsonpstreamlit_component_template||[]).push([[0],{17:function(t,e,a){t.exports=a(28)},28:function(t,e,a){"use strict";a.r(e);var n=a(6),o=a.n(n),r=a(15),c=a.n(r),i=a(0),l=a(1),s=a(2),u=a(3),d=a(8),p=a(11),m=(a(27),function(t){Object(s.a)(a,t);var e=Object(u.a)(a);function a(){var t;Object(l.a)(this,a);for(var n=arguments.length,r=new Array(n),c=0;c<n;c++)r[c]=arguments[c];return(t=e.call.apply(e,[this].concat(r))).state={isFocused:!1,recordState:null,audioDataURL:"",reset:!1},t.render=function(){var e=t.props.theme,a={},n=t.state.recordState;if(e){var r="1px solid ".concat(t.state.isFocused?e.primaryColor:"gray");a.border=r,a.outline=r}return o.a.createElement("span",null,o.a.createElement("div",null,o.a.createElement("button",{id:"record",onClick:t.onClick_start},"Start Recording"),o.a.createElement("button",{id:"stop",onClick:t.onClick_stop},"Stop"),o.a.createElement("button",{id:"reset",onClick:t.onClick_reset},"Reset"),o.a.createElement("button",{id:"continue",onClick:t.onClick_continue},"Download"),o.a.createElement(p.b,{state:n,onStop:t.onStop_audio,type:"audio/wav",backgroundColor:"rgb(255, 255, 255)",foregroundColor:"rgb(255,76,75)",canvasWidth:450,canvasHeight:100}),o.a.createElement("audio",{id:"audio",controls:!0,src:t.state.audioDataURL})))},t.onClick_start=function(){t.setState({reset:!1,audioDataURL:"",recordState:p.a.START}),d.a.setComponentValue("")},t.onClick_stop=function(){t.setState({reset:!1,recordState:p.a.STOP})},t.onClick_reset=function(){t.setState({reset:!0,audioDataURL:"",recordState:p.a.STOP}),d.a.setComponentValue("")},t.onClick_continue=function(){if(""!==t.state.audioDataURL){var e=(new Date).toLocaleString(),a="streamlit_audio_"+(e=(e=(e=e.replace(" ","")).replace(/_/g,"")).replace(",",""))+".wav",n=document.createElement("a");n.style.display="none",n.href=t.state.audioDataURL,n.download=a,document.body.appendChild(n),n.click()}},t.onStop_audio=function(e){!0===t.state.reset?(t.setState({audioDataURL:""}),d.a.setComponentValue("")):(t.setState({audioDataURL:e.url}),fetch(e.url).then((function(t){return t.blob()})).then((function(t){return new Response(t).arrayBuffer()})).then((function(t){d.a.setComponentValue({arr:new Uint8Array(t)})})))},t}return Object(i.a)(a)}(d.b)),f=Object(d.c)(m);d.a.setComponentReady(),d.a.setFrameHeight(),c.a.render(o.a.createElement(o.a.StrictMode,null,o.a.createElement(f,null)),document.getElementById("root"))}},[[17,1,2]]]);
|
2 |
-
//# sourceMappingURL=main.833ba252.chunk.js.map
|
|
|
|
|
|
lib/st_audiorec/frontend/build/static/js/main.833ba252.chunk.js.map
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"version":3,"sources":["StreamlitAudioRecorder.tsx","index.tsx"],"names":["StAudioRec","state","isFocused","recordState","audioDataURL","reset","render","theme","props","style","borderStyling","primaryColor","border","outline","id","onClick","onClick_start","onClick_stop","onClick_reset","onClick_continue","onStop","onStop_audio","type","backgroundColor","foregroundColor","canvasWidth","canvasHeight","controls","src","setState","RecordState","START","Streamlit","setComponentValue","STOP","datetime","Date","toLocaleString","filename","replace","a","document","createElement","display","href","download","body","appendChild","click","data","url","fetch","then","ctx","blob","Response","arrayBuffer","buffer","Uint8Array","StreamlitComponentBase","withStreamlitConnection","setComponentReady","setFrameHeight","ReactDOM","StrictMode","getElementById"],"mappings":"wQAiBMA,G,kNACGC,MAAQ,CAAEC,WAAW,EAAOC,YAAa,KAAMC,aAAc,GAAIC,OAAO,G,EAExEC,OAAS,WAMd,IAAQC,EAAU,EAAKC,MAAfD,MACFE,EAA6B,GAE3BN,EAAgB,EAAKF,MAArBE,YAGR,GAAII,EAAO,CAGT,IAAMG,EAAa,oBACjB,EAAKT,MAAMC,UAAYK,EAAMI,aAAe,QAC9CF,EAAMG,OAASF,EACfD,EAAMI,QAAUH,EAGlB,OACE,8BACE,6BACE,4BAAQI,GAAG,SAASC,QAAS,EAAKC,eAAlC,mBAGA,4BAAQF,GAAG,OAAOC,QAAS,EAAKE,cAAhC,QAGA,4BAAQH,GAAG,QAAQC,QAAS,EAAKG,eAAjC,SAIA,4BAAQJ,GAAG,WAAWC,QAAS,EAAKI,kBAApC,YAIA,kBAAC,IAAD,CACElB,MAAOE,EACPiB,OAAQ,EAAKC,aACbC,KAAK,YACLC,gBAAgB,qBAChBC,gBAAgB,iBAChBC,YAAa,IACbC,aAAc,MAGhB,2BACEZ,GAAG,QACHa,UAAQ,EACRC,IAAK,EAAK3B,MAAMG,kB,EASlBY,cAAgB,WACtB,EAAKa,SAAS,CACZxB,OAAO,EACPD,aAAc,GACdD,YAAa2B,IAAYC,QAE3BC,IAAUC,kBAAkB,K,EAGtBhB,aAAe,WACrB,EAAKY,SAAS,CACZxB,OAAO,EACPF,YAAa2B,IAAYI,Q,EAIrBhB,cAAgB,WACtB,EAAKW,SAAS,CACZxB,OAAO,EACPD,aAAc,GACdD,YAAa2B,IAAYI,OAE3BF,IAAUC,kBAAkB,K,EAGtBd,iBAAmB,WACzB,GAAgC,KAA5B,EAAKlB,MAAMG,aACf,CAEE,IAAI+B,GAAW,IAAIC,MAAOC,iBAItBC,EAAW,oBADfH,GADAA,GADAA,EAAWA,EAASI,QAAQ,IAAK,KACbA,QAAQ,KAAM,KACdA,QAAQ,IAAK,KACc,OAGzCC,EAAIC,SAASC,cAAc,KACjCF,EAAE/B,MAAMkC,QAAU,OAClBH,EAAEI,KAAO,EAAK3C,MAAMG,aACpBoC,EAAEK,SAAWP,EACbG,SAASK,KAAKC,YAAYP,GAC1BA,EAAEQ,U,EAIE3B,aAAe,SAAC4B,IACG,IAArB,EAAKhD,MAAMI,OAEb,EAAKwB,SAAS,CACZzB,aAAc,KAEhB4B,IAAUC,kBAAkB,MAE5B,EAAKJ,SAAS,CACZzB,aAAc6C,EAAKC,MAGrBC,MAAMF,EAAKC,KAAKE,MAAK,SAASC,GAC5B,OAAOA,EAAIC,UACVF,MAAK,SAASE,GAGf,OAAQ,IAAIC,SAASD,GAAOE,iBAC3BJ,MAAK,SAASK,GACfzB,IAAUC,kBAAkB,CAC1B,IAAO,IAAIyB,WAAWD,U,yBAhIPE,MA8IVC,cAAwB5D,GAIvCgC,IAAU6B,oBAIV7B,IAAU8B,iBCnKVC,IAASzD,OACP,kBAAC,IAAM0D,WAAP,KACE,kBAAC,EAAD,OAEFvB,SAASwB,eAAe,W","file":"static/js/main.833ba252.chunk.js","sourcesContent":["import {\n Streamlit,\n StreamlitComponentBase,\n withStreamlitConnection,\n} from \"streamlit-component-lib\"\nimport React, { ReactNode } from \"react\"\n\nimport AudioReactRecorder, { RecordState } from 'audio-react-recorder'\nimport 'audio-react-recorder/dist/index.css'\n\ninterface State {\n isFocused: boolean\n recordState: null\n audioDataURL: string\n reset: boolean\n}\n\nclass StAudioRec extends StreamlitComponentBase<State> {\n public state = { isFocused: false, recordState: null, audioDataURL: '', reset: false}\n\n public render = (): ReactNode => {\n // Arguments that are passed to the plugin in Python are accessible\n\n // Streamlit sends us a theme object via props that we can use to ensure\n // that our component has visuals that match the active theme in a\n // streamlit app.\n const { theme } = this.props\n const style: React.CSSProperties = {}\n\n const { recordState } = this.state\n\n // compatibility with older vers of Streamlit that don't send theme object.\n if (theme) {\n // Use the theme object to style our button border. Alternatively, the\n // theme style is defined in CSS vars.\n const borderStyling = `1px solid ${\n this.state.isFocused ? theme.primaryColor : \"gray\"}`\n style.border = borderStyling\n style.outline = borderStyling\n }\n\n return (\n <span>\n <div>\n <button id='record' onClick={this.onClick_start}>\n Start Recording\n </button>\n <button id='stop' onClick={this.onClick_stop}>\n Stop\n </button>\n <button id='reset' onClick={this.onClick_reset}>\n Reset\n </button>\n\n <button id='continue' onClick={this.onClick_continue}>\n Download\n </button>\n\n <AudioReactRecorder\n state={recordState}\n onStop={this.onStop_audio}\n type='audio/wav'\n backgroundColor='rgb(255, 255, 255)'\n foregroundColor='rgb(255,76,75)'\n canvasWidth={450}\n canvasHeight={100}\n />\n\n <audio\n id='audio'\n controls\n src={this.state.audioDataURL}\n />\n\n </div>\n </span>\n )\n }\n\n\n private onClick_start = () => {\n this.setState({\n reset: false,\n audioDataURL: '',\n recordState: RecordState.START\n })\n Streamlit.setComponentValue('')\n }\n\n private onClick_stop = () => {\n this.setState({\n reset: false,\n recordState: RecordState.STOP\n })\n }\n\n private onClick_reset = () => {\n this.setState({\n reset: true,\n audioDataURL: '',\n recordState: RecordState.STOP\n })\n Streamlit.setComponentValue('')\n }\n\n private onClick_continue = () => {\n if (this.state.audioDataURL !== '')\n {\n // get datetime string for filename\n let datetime = new Date().toLocaleString();\n datetime = datetime.replace(' ', '');\n datetime = datetime.replace(/_/g, '');\n datetime = datetime.replace(',', '');\n var filename = 'streamlit_audio_' + datetime + '.wav';\n\n // auromatically trigger download\n const a = document.createElement('a');\n a.style.display = 'none';\n a.href = this.state.audioDataURL;\n a.download = filename;\n document.body.appendChild(a);\n a.click();\n }\n }\n\n private onStop_audio = (data) => {\n if (this.state.reset === true)\n {\n this.setState({\n audioDataURL: ''\n })\n Streamlit.setComponentValue('')\n }else{\n this.setState({\n audioDataURL: data.url\n })\n\n fetch(data.url).then(function(ctx){\n return ctx.blob()\n }).then(function(blob){\n // converting blob to arrayBuffer, this process step needs to be be improved\n // this operation's time complexity scales exponentially with audio length\n return (new Response(blob)).arrayBuffer()\n }).then(function(buffer){\n Streamlit.setComponentValue({\n \"arr\": new Uint8Array(buffer)\n })\n })\n\n }\n\n\n }\n}\n\n// \"withStreamlitConnection\" is a wrapper function. It bootstraps the\n// connection between your component and the Streamlit app, and handles\n// passing arguments from Python -> Component.\n// You don't need to edit withStreamlitConnection (but you're welcome to!).\nexport default withStreamlitConnection(StAudioRec)\n\n// Tell Streamlit we're ready to start receiving data. We won't get our\n// first RENDER_EVENT until we call this function.\nStreamlit.setComponentReady()\n\n// Finally, tell Streamlit to update our initial height. We omit the\n// `height` parameter here to have it default to our scrollHeight.\nStreamlit.setFrameHeight()\n","import React from \"react\"\nimport ReactDOM from \"react-dom\"\nimport StAudioRec from \"./StreamlitAudioRecorder\"\n\nReactDOM.render(\n <React.StrictMode>\n <StAudioRec />\n </React.StrictMode>,\n document.getElementById(\"root\")\n)\n"],"sourceRoot":""}
|
|
|
|
lib/st_audiorec/frontend/build/static/js/runtime-main.11ec9aca.js
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
!function(e){function t(t){for(var n,l,a=t[0],p=t[1],i=t[2],c=0,s=[];c<a.length;c++)l=a[c],Object.prototype.hasOwnProperty.call(o,l)&&o[l]&&s.push(o[l][0]),o[l]=0;for(n in p)Object.prototype.hasOwnProperty.call(p,n)&&(e[n]=p[n]);for(f&&f(t);s.length;)s.shift()();return u.push.apply(u,i||[]),r()}function r(){for(var e,t=0;t<u.length;t++){for(var r=u[t],n=!0,a=1;a<r.length;a++){var p=r[a];0!==o[p]&&(n=!1)}n&&(u.splice(t--,1),e=l(l.s=r[0]))}return e}var n={},o={1:0},u=[];function l(t){if(n[t])return n[t].exports;var r=n[t]={i:t,l:!1,exports:{}};return e[t].call(r.exports,r,r.exports,l),r.l=!0,r.exports}l.m=e,l.c=n,l.d=function(e,t,r){l.o(e,t)||Object.defineProperty(e,t,{enumerable:!0,get:r})},l.r=function(e){"undefined"!==typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},l.t=function(e,t){if(1&t&&(e=l(e)),8&t)return e;if(4&t&&"object"===typeof e&&e&&e.__esModule)return e;var r=Object.create(null);if(l.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:e}),2&t&&"string"!=typeof e)for(var n in e)l.d(r,n,function(t){return e[t]}.bind(null,n));return r},l.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return l.d(t,"a",t),t},l.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},l.p="./";var a=this.webpackJsonpstreamlit_component_template=this.webpackJsonpstreamlit_component_template||[],p=a.push.bind(a);a.push=t,a=a.slice();for(var i=0;i<a.length;i++)t(a[i]);var f=p;r()}([]);
|
2 |
-
//# sourceMappingURL=runtime-main.11ec9aca.js.map
|
|
|
|
|
|
lib/st_audiorec/frontend/build/static/js/runtime-main.11ec9aca.js.map
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"version":3,"sources":["../webpack/bootstrap"],"names":["webpackJsonpCallback","data","moduleId","chunkId","chunkIds","moreModules","executeModules","i","resolves","length","Object","prototype","hasOwnProperty","call","installedChunks","push","modules","parentJsonpFunction","shift","deferredModules","apply","checkDeferredModules","result","deferredModule","fulfilled","j","depId","splice","__webpack_require__","s","installedModules","1","exports","module","l","m","c","d","name","getter","o","defineProperty","enumerable","get","r","Symbol","toStringTag","value","t","mode","__esModule","ns","create","key","bind","n","object","property","p","jsonpArray","this","oldJsonpFunction","slice"],"mappings":"aACE,SAASA,EAAqBC,GAQ7B,IAPA,IAMIC,EAAUC,EANVC,EAAWH,EAAK,GAChBI,EAAcJ,EAAK,GACnBK,EAAiBL,EAAK,GAIHM,EAAI,EAAGC,EAAW,GACpCD,EAAIH,EAASK,OAAQF,IACzBJ,EAAUC,EAASG,GAChBG,OAAOC,UAAUC,eAAeC,KAAKC,EAAiBX,IAAYW,EAAgBX,IACpFK,EAASO,KAAKD,EAAgBX,GAAS,IAExCW,EAAgBX,GAAW,EAE5B,IAAID,KAAYG,EACZK,OAAOC,UAAUC,eAAeC,KAAKR,EAAaH,KACpDc,EAAQd,GAAYG,EAAYH,IAKlC,IAFGe,GAAqBA,EAAoBhB,GAEtCO,EAASC,QACdD,EAASU,OAATV,GAOD,OAHAW,EAAgBJ,KAAKK,MAAMD,EAAiBb,GAAkB,IAGvDe,IAER,SAASA,IAER,IADA,IAAIC,EACIf,EAAI,EAAGA,EAAIY,EAAgBV,OAAQF,IAAK,CAG/C,IAFA,IAAIgB,EAAiBJ,EAAgBZ,GACjCiB,GAAY,EACRC,EAAI,EAAGA,EAAIF,EAAed,OAAQgB,IAAK,CAC9C,IAAIC,EAAQH,EAAeE,GACG,IAA3BX,EAAgBY,KAAcF,GAAY,GAE3CA,IACFL,EAAgBQ,OAAOpB,IAAK,GAC5Be,EAASM,EAAoBA,EAAoBC,EAAIN,EAAe,KAItE,OAAOD,EAIR,IAAIQ,EAAmB,GAKnBhB,EAAkB,CACrBiB,EAAG,GAGAZ,EAAkB,GAGtB,SAASS,EAAoB1B,GAG5B,GAAG4B,EAAiB5B,GACnB,OAAO4B,EAAiB5B,GAAU8B,QAGnC,IAAIC,EAASH,EAAiB5B,GAAY,CACzCK,EAAGL,EACHgC,GAAG,EACHF,QAAS,IAUV,OANAhB,EAAQd,GAAUW,KAAKoB,EAAOD,QAASC,EAAQA,EAAOD,QAASJ,GAG/DK,EAAOC,GAAI,EAGJD,EAAOD,QAKfJ,EAAoBO,EAAInB,EAGxBY,EAAoBQ,EAAIN,EAGxBF,EAAoBS,EAAI,SAASL,EAASM,EAAMC,GAC3CX,EAAoBY,EAAER,EAASM,IAClC5B,OAAO+B,eAAeT,EAASM,EAAM,CAAEI,YAAY,EAAMC,IAAKJ,KAKhEX,EAAoBgB,EAAI,SAASZ,GACX,qBAAXa,QAA0BA,OAAOC,aAC1CpC,OAAO+B,eAAeT,EAASa,OAAOC,YAAa,CAAEC,MAAO,WAE7DrC,OAAO+B,eAAeT,EAAS,aAAc,CAAEe,OAAO,KAQvDnB,EAAoBoB,EAAI,SAASD,EAAOE,GAEvC,GADU,EAAPA,IAAUF,EAAQnB,EAAoBmB,IAC/B,EAAPE,EAAU,OAAOF,EACpB,GAAW,EAAPE,GAA8B,kBAAVF,GAAsBA,GAASA,EAAMG,WAAY,OAAOH,EAChF,IAAII,EAAKzC,OAAO0C,OAAO,MAGvB,GAFAxB,EAAoBgB,EAAEO,GACtBzC,OAAO+B,eAAeU,EAAI,UAAW,CAAET,YAAY,EAAMK,MAAOA,IACtD,EAAPE,GAA4B,iBAATF,EAAmB,IAAI,IAAIM,KAAON,EAAOnB,EAAoBS,EAAEc,EAAIE,EAAK,SAASA,GAAO,OAAON,EAAMM,IAAQC,KAAK,KAAMD,IAC9I,OAAOF,GAIRvB,EAAoB2B,EAAI,SAAStB,GAChC,IAAIM,EAASN,GAAUA,EAAOiB,WAC7B,WAAwB,OAAOjB,EAAgB,SAC/C,WAA8B,OAAOA,GAEtC,OADAL,EAAoBS,EAAEE,EAAQ,IAAKA,GAC5BA,GAIRX,EAAoBY,EAAI,SAASgB,EAAQC,GAAY,OAAO/C,OAAOC,UAAUC,eAAeC,KAAK2C,EAAQC,IAGzG7B,EAAoB8B,EAAI,KAExB,IAAIC,EAAaC,KAA+C,yCAAIA,KAA+C,0CAAK,GACpHC,EAAmBF,EAAW5C,KAAKuC,KAAKK,GAC5CA,EAAW5C,KAAOf,EAClB2D,EAAaA,EAAWG,QACxB,IAAI,IAAIvD,EAAI,EAAGA,EAAIoD,EAAWlD,OAAQF,IAAKP,EAAqB2D,EAAWpD,IAC3E,IAAIU,EAAsB4C,EAI1BxC,I","file":"static/js/runtime-main.11ec9aca.js","sourcesContent":[" \t// install a JSONP callback for chunk loading\n \tfunction webpackJsonpCallback(data) {\n \t\tvar chunkIds = data[0];\n \t\tvar moreModules = data[1];\n \t\tvar executeModules = data[2];\n\n \t\t// add \"moreModules\" to the modules object,\n \t\t// then flag all \"chunkIds\" as loaded and fire callback\n \t\tvar moduleId, chunkId, i = 0, resolves = [];\n \t\tfor(;i < chunkIds.length; i++) {\n \t\t\tchunkId = chunkIds[i];\n \t\t\tif(Object.prototype.hasOwnProperty.call(installedChunks, chunkId) && installedChunks[chunkId]) {\n \t\t\t\tresolves.push(installedChunks[chunkId][0]);\n \t\t\t}\n \t\t\tinstalledChunks[chunkId] = 0;\n \t\t}\n \t\tfor(moduleId in moreModules) {\n \t\t\tif(Object.prototype.hasOwnProperty.call(moreModules, moduleId)) {\n \t\t\t\tmodules[moduleId] = moreModules[moduleId];\n \t\t\t}\n \t\t}\n \t\tif(parentJsonpFunction) parentJsonpFunction(data);\n\n \t\twhile(resolves.length) {\n \t\t\tresolves.shift()();\n \t\t}\n\n \t\t// add entry modules from loaded chunk to deferred list\n \t\tdeferredModules.push.apply(deferredModules, executeModules || []);\n\n \t\t// run deferred modules when all chunks ready\n \t\treturn checkDeferredModules();\n \t};\n \tfunction checkDeferredModules() {\n \t\tvar result;\n \t\tfor(var i = 0; i < deferredModules.length; i++) {\n \t\t\tvar deferredModule = deferredModules[i];\n \t\t\tvar fulfilled = true;\n \t\t\tfor(var j = 1; j < deferredModule.length; j++) {\n \t\t\t\tvar depId = deferredModule[j];\n \t\t\t\tif(installedChunks[depId] !== 0) fulfilled = false;\n \t\t\t}\n \t\t\tif(fulfilled) {\n \t\t\t\tdeferredModules.splice(i--, 1);\n \t\t\t\tresult = __webpack_require__(__webpack_require__.s = deferredModule[0]);\n \t\t\t}\n \t\t}\n\n \t\treturn result;\n \t}\n\n \t// The module cache\n \tvar installedModules = {};\n\n \t// object to store loaded and loading chunks\n \t// undefined = chunk not loaded, null = chunk preloaded/prefetched\n \t// Promise = chunk loading, 0 = chunk loaded\n \tvar installedChunks = {\n \t\t1: 0\n \t};\n\n \tvar deferredModules = [];\n\n \t// The require function\n \tfunction __webpack_require__(moduleId) {\n\n \t\t// Check if module is in cache\n \t\tif(installedModules[moduleId]) {\n \t\t\treturn installedModules[moduleId].exports;\n \t\t}\n \t\t// Create a new module (and put it into the cache)\n \t\tvar module = installedModules[moduleId] = {\n \t\t\ti: moduleId,\n \t\t\tl: false,\n \t\t\texports: {}\n \t\t};\n\n \t\t// Execute the module function\n \t\tmodules[moduleId].call(module.exports, module, module.exports, __webpack_require__);\n\n \t\t// Flag the module as loaded\n \t\tmodule.l = true;\n\n \t\t// Return the exports of the module\n \t\treturn module.exports;\n \t}\n\n\n \t// expose the modules object (__webpack_modules__)\n \t__webpack_require__.m = modules;\n\n \t// expose the module cache\n \t__webpack_require__.c = installedModules;\n\n \t// define getter function for harmony exports\n \t__webpack_require__.d = function(exports, name, getter) {\n \t\tif(!__webpack_require__.o(exports, name)) {\n \t\t\tObject.defineProperty(exports, name, { enumerable: true, get: getter });\n \t\t}\n \t};\n\n \t// define __esModule on exports\n \t__webpack_require__.r = function(exports) {\n \t\tif(typeof Symbol !== 'undefined' && Symbol.toStringTag) {\n \t\t\tObject.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });\n \t\t}\n \t\tObject.defineProperty(exports, '__esModule', { value: true });\n \t};\n\n \t// create a fake namespace object\n \t// mode & 1: value is a module id, require it\n \t// mode & 2: merge all properties of value into the ns\n \t// mode & 4: return value when already ns object\n \t// mode & 8|1: behave like require\n \t__webpack_require__.t = function(value, mode) {\n \t\tif(mode & 1) value = __webpack_require__(value);\n \t\tif(mode & 8) return value;\n \t\tif((mode & 4) && typeof value === 'object' && value && value.__esModule) return value;\n \t\tvar ns = Object.create(null);\n \t\t__webpack_require__.r(ns);\n \t\tObject.defineProperty(ns, 'default', { enumerable: true, value: value });\n \t\tif(mode & 2 && typeof value != 'string') for(var key in value) __webpack_require__.d(ns, key, function(key) { return value[key]; }.bind(null, key));\n \t\treturn ns;\n \t};\n\n \t// getDefaultExport function for compatibility with non-harmony modules\n \t__webpack_require__.n = function(module) {\n \t\tvar getter = module && module.__esModule ?\n \t\t\tfunction getDefault() { return module['default']; } :\n \t\t\tfunction getModuleExports() { return module; };\n \t\t__webpack_require__.d(getter, 'a', getter);\n \t\treturn getter;\n \t};\n\n \t// Object.prototype.hasOwnProperty.call\n \t__webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };\n\n \t// __webpack_public_path__\n \t__webpack_require__.p = \"./\";\n\n \tvar jsonpArray = this[\"webpackJsonpstreamlit_component_template\"] = this[\"webpackJsonpstreamlit_component_template\"] || [];\n \tvar oldJsonpFunction = jsonpArray.push.bind(jsonpArray);\n \tjsonpArray.push = webpackJsonpCallback;\n \tjsonpArray = jsonpArray.slice();\n \tfor(var i = 0; i < jsonpArray.length; i++) webpackJsonpCallback(jsonpArray[i]);\n \tvar parentJsonpFunction = oldJsonpFunction;\n\n\n \t// run deferred modules from other chunks\n \tcheckDeferredModules();\n"],"sourceRoot":""}
|
|
|
|
lib/st_audiorec/frontend/build/styles.css
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
*{
|
2 |
-
margin: 0;
|
3 |
-
padding: 0;
|
4 |
-
}
|
5 |
-
|
6 |
-
.container{
|
7 |
-
margin: 0 auto;
|
8 |
-
text-align: center;
|
9 |
-
}
|
10 |
-
|
11 |
-
.display{
|
12 |
-
width: 100%;
|
13 |
-
padding: 5px 0;
|
14 |
-
margin: 15px 0;
|
15 |
-
}
|
16 |
-
|
17 |
-
.controllers{
|
18 |
-
width: 100%;
|
19 |
-
padding: 5px 0;
|
20 |
-
margin-top: 15px;
|
21 |
-
margin-bottom: 35px;
|
22 |
-
}
|
23 |
-
|
24 |
-
button{
|
25 |
-
padding-top: 0.25rem;
|
26 |
-
padding-bottom: 0.25rem;
|
27 |
-
padding-right: 0.75rem;
|
28 |
-
padding-left: 0.75rem;
|
29 |
-
margin-right: 0.5rem;
|
30 |
-
margin-left: 0.1rem;
|
31 |
-
font-size: 16px;
|
32 |
-
background-color: #ffffff;
|
33 |
-
color: #000000;
|
34 |
-
border: 1px solid rgba(49, 51, 63, 0.2);
|
35 |
-
border-radius: 0.25rem;
|
36 |
-
margin-top: 0.75rem;
|
37 |
-
margin-bottom: 0.25rem;
|
38 |
-
}
|
39 |
-
|
40 |
-
button:hover{
|
41 |
-
padding-top: 0.25rem;
|
42 |
-
padding-bottom: 0.25rem;
|
43 |
-
padding-right: 0.75rem;
|
44 |
-
padding-left: 0.75rem;
|
45 |
-
margin-right: 0.5rem;
|
46 |
-
margin-left: 0.1rem;
|
47 |
-
font-size: 16px;
|
48 |
-
background-color: #ffffff;
|
49 |
-
color: #ff4c4b;
|
50 |
-
border: 1px solid #ff4c4b;
|
51 |
-
border-radius: 0.25rem;
|
52 |
-
margin-top: 0.75rem;
|
53 |
-
margin-bottom: 0.25rem;
|
54 |
-
}
|
55 |
-
|
56 |
-
audio {
|
57 |
-
width: 450px;
|
58 |
-
height: 45px;
|
59 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/st_audiorec/frontend/package-lock.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
lib/st_audiorec/frontend/package.json
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "streamlit_component_template",
|
3 |
-
"version": "0.1.0",
|
4 |
-
"private": true,
|
5 |
-
"dependencies": {
|
6 |
-
"@types/jest": "^24.0.0",
|
7 |
-
"@types/node": "^12.0.0",
|
8 |
-
"@types/react": "^16.9.0",
|
9 |
-
"@types/react-dom": "^16.9.0",
|
10 |
-
"audio-react-recorder": "^1.0.4",
|
11 |
-
"axios": "^0.27.2",
|
12 |
-
"normalize.css": "^8.0.1",
|
13 |
-
"react": "^16.13.1",
|
14 |
-
"react-dom": "^16.13.1",
|
15 |
-
"react-media-recorder": "^1.6.4",
|
16 |
-
"react-scripts": "3.4.1",
|
17 |
-
"streamlit-component-lib": "^1.4.0",
|
18 |
-
"turbodepot-node": "^7.0.1",
|
19 |
-
"typescript": "~3.8.0",
|
20 |
-
"use-media-recorder": "^2.0.4"
|
21 |
-
},
|
22 |
-
"scripts": {
|
23 |
-
"start": "react-scripts start",
|
24 |
-
"build": "react-scripts build",
|
25 |
-
"test": "react-scripts test",
|
26 |
-
"eject": "react-scripts eject"
|
27 |
-
},
|
28 |
-
"eslintConfig": {
|
29 |
-
"extends": "react-app"
|
30 |
-
},
|
31 |
-
"browserslist": {
|
32 |
-
"production": [
|
33 |
-
">0.2%",
|
34 |
-
"not dead",
|
35 |
-
"not op_mini all"
|
36 |
-
],
|
37 |
-
"development": [
|
38 |
-
"last 1 chrome version",
|
39 |
-
"last 1 firefox version",
|
40 |
-
"last 1 safari version"
|
41 |
-
]
|
42 |
-
},
|
43 |
-
"homepage": "."
|
44 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|