agrifab_gradio / app.py
fabiolamp's picture
Update app.py
2fe2fff verified
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-generation", model="mistralai/Mistral-7B-v0.1")
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
title = "microsoft/DialoGPT"
description = ""
examples = [["How are you?"]]
#tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
#model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
#tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
#model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(
input + tokenizer.eos_token, return_tensors="pt"
)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).split("<|endoftext|>")
# print('decoded_response-->>'+str(response))
response = [
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
] # convert to tuples of list
# print('response-->>'+str(response))
return response, history
gr.Interface(
fn=predict,
title=title,
description=description,
examples=examples,
inputs=["text", "state"],
outputs=["chatbot", "state"],
theme="finlaymacklon/boxy_violet",
).launch()