File size: 5,192 Bytes
7dcb60d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa8c79c
 
7dcb60d
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# This file is adapted from https://github.com/facebookresearch/CutLER/blob/077938c626341723050a1971107af552a6ca6697/cutler/demo/demo.py
# The original license file is the file named LICENSE.CutLER in this repo.

import argparse
import multiprocessing as mp
import pathlib
import shlex
import subprocess
import sys

import numpy as np
import torch
from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image

sys.path.append('CutLER/cutler/')
sys.path.append('CutLER/cutler/demo')

from config import add_cutler_config
from predictor import VisualizationDemo

mp.set_start_method('spawn', force=True)

UNSUPERVISED_MODELS = {
    'Unsupervised': {
        'config_path':
        'CutLER/cutler/model_zoo/configs/CutLER-ImageNet/cascade_mask_rcnn_R_50_FPN.yaml',
        'weight_url':
        'http://dl.fbaipublicfiles.com/cutler/checkpoints/cutler_cascade_final.pth',
    }
}
SEMI_SUPERVISED_MODELS = {
    f'Semi-supervised with COCO ({perc}%)': {
        'config_path':
        f'CutLER/cutler/model_zoo/configs/COCO-Semisupervised/cascade_mask_rcnn_R_50_FPN_{perc}perc.yaml',
        'weight_url':
        f'http://dl.fbaipublicfiles.com/cutler/checkpoints/cutler_semi_{perc}perc.pth',
    }
    for perc in [1, 2, 5, 10, 20, 30, 40, 50, 60, 80]
}
FULLY_SUPERVISED_MODELS = {
    'Fully-supervised with COCO': {
        'config_path':
        f'CutLER/cutler/model_zoo/configs/COCO-Semisupervised/cascade_mask_rcnn_R_50_FPN_100perc.yaml',
        'weight_url':
        f'http://dl.fbaipublicfiles.com/cutler/checkpoints/cutler_fully_100perc.pth',
    }
}


def setup_cfg(args):
    # load config from file and command-line arguments
    cfg = get_cfg()
    add_cutler_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    # Disable the use of SyncBN normalization when running on a CPU
    # SyncBN is not supported on CPU and can cause errors, so we switch to BN instead
    if cfg.MODEL.DEVICE == 'cpu' and cfg.MODEL.RESNETS.NORM == 'SyncBN':
        cfg.MODEL.RESNETS.NORM = 'BN'
        cfg.MODEL.FPN.NORM = 'BN'
    # Set score_threshold for builtin models
    cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold
    cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold
    cfg.freeze()
    return cfg


def get_parser():
    parser = argparse.ArgumentParser(
        description='Detectron2 demo for builtin configs')
    parser.add_argument(
        '--config-file',
        default=
        'model_zoo/configs/CutLER-ImageNet/cascade_mask_rcnn_R_50_FPN.yaml',
        metavar='FILE',
        help='path to config file',
    )
    parser.add_argument('--webcam',
                        action='store_true',
                        help='Take inputs from webcam.')
    parser.add_argument('--video-input', help='Path to video file.')
    parser.add_argument(
        '--input',
        nargs='+',
        help='A list of space separated input images; '
        "or a single glob pattern such as 'directory/*.jpg'",
    )
    parser.add_argument(
        '--output',
        help='A file or directory to save output visualizations. '
        'If not given, will show output in an OpenCV window.',
    )

    parser.add_argument(
        '--confidence-threshold',
        type=float,
        default=0.35,
        help='Minimum score for instance predictions to be shown',
    )
    parser.add_argument(
        '--opts',
        help="Modify config options using the command-line 'KEY VALUE' pairs",
        default=[],
        nargs=argparse.REMAINDER,
    )
    return parser


class Model:
    MODEL_DICT = UNSUPERVISED_MODELS | SEMI_SUPERVISED_MODELS | FULLY_SUPERVISED_MODELS

    def __init__(self):
        self.model_dir = pathlib.Path('checkpoints')
        self.model_dir.mkdir(exist_ok=True)

    def load_model(self, model_name: str,
                   score_threshold: float) -> VisualizationDemo:
        model_info = self.MODEL_DICT[model_name]
        weight_url = model_info['weight_url']
        weight_path = self.model_dir / weight_url.split('/')[-1]
        if not weight_path.exists():
            weight_path.parent.mkdir(exist_ok=True)
            subprocess.run(shlex.split(f'wget {weight_url} -O {weight_path}'))

        arg_list = [
            '--config-file', model_info['config_path'],
            '--confidence-threshold',
            str(score_threshold), '--opts', 'MODEL.WEIGHTS',
            weight_path.as_posix(), 'MODEL.DEVICE',
            'cuda:0' if torch.cuda.is_available() else 'cpu'
        ]
        if model_name in UNSUPERVISED_MODELS:
            arg_list += ['DATASETS.TEST', '()']
        args = get_parser().parse_args(arg_list)
        cfg = setup_cfg(args)
        return VisualizationDemo(cfg)

    def __call__(self,
                 image_path: str,
                 model_name: str,
                 score_threshold: float = 0.5) -> np.ndarray:
        model = self.load_model(model_name, score_threshold)
        image = read_image(image_path, format='BGR')
        _, res = model.run_on_image(image)
        return res.get_image()