lpw's picture
Update app.py
2d5af26
raw
history blame
2 kB
import os
os.system("pip install gradio==3.3")
import gradio as gr
import numpy as np
import streamlit as st
title = "Hokkien Translation"
description = "Gradio Demo for fairseq speech-to-speech translation models. We have S2UT and UnitY models for bidirectional Hokkien and English translation. Please select the model and record your input to try it."
article = "<p style='text-align: center'><a href='https://ai.facebook.com/blog/ai-translation-hokkien/' target='_blank'>Speech-to-speech translation for a real-world unwritten language</a> | <a href='https://github.com/facebookresearch/fairseq/tree/ust/examples/hokkien' target='_blank'>Github Repo</a></p>"
examples = [
["enhanced_direct_s2st_units_audios_es-en_set2_source_12478_cv.flac","xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022"],
]
io1 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_en-hk", api_key=st.secrets["api_key"])
io2 = gr.Interface.load("huggingface/facebook/xm_transformer_s2ut_hk-en", api_key=st.secrets["api_key"])
io3 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_en-hk", api_key=st.secrets["api_key"])
io4 = gr.Interface.load("huggingface/facebook/xm_transformer_unity_hk-en", api_key=st.secrets["api_key"])
def inference(audio, model):
if model == "xm_transformer_s2ut_en-hk":
out_audio = io1(audio)
elif model == "xm_transformer_s2ut_hk-en":
out_audio = io2(audio)
elif model == "xm_transformer_unity_en-hk":
out_audio = io3(audio)
else:
out_audio = io4(audio)
return out_audio
gr.Interface(
inference,
[gr.inputs.Audio(source="microphone", type="filepath", label="Input"),gr.inputs.Dropdown(choices=["xm_transformer_unity_en-hk", "xm_transformer_unity_en-hk", "xm_transformer_s2ut_en-hk", "xm_transformer_s2ut_hk-en"], default="xm_transformer_unity_en-hk",type="value", label="Model")
],
gr.outputs.Audio(label="Output"),
article=article,
title=title,
description=description).queue().launch()