Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,509 Bytes
9d0d223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Utility functions to load from the checkpoints.
Each checkpoint is a torch.saved dict with the following keys:
- 'xp.cfg': the hydra config as dumped during training. This should be used
to rebuild the object using the audiocraft.models.builders functions,
- 'model_best_state': a readily loadable best state for the model, including
the conditioner. The model obtained from `xp.cfg` should be compatible
with this state dict. In the case of a LM, the encodec model would not be
bundled along but instead provided separately.
Those functions also support loading from a remote location with the Torch Hub API.
They also support overriding some parameters, in particular the device and dtype
of the returned model.
"""
from pathlib import Path
from huggingface_hub import hf_hub_download
import typing as tp
import os
from omegaconf import OmegaConf, DictConfig
import torch
import audiocraft
from . import builders
from .encodec import CompressionModel
def get_audiocraft_cache_dir() -> tp.Optional[str]:
return os.environ.get('AUDIOCRAFT_CACHE_DIR', None)
def _get_state_dict(
file_or_url_or_id: tp.Union[Path, str],
filename: tp.Optional[str] = None,
device='cpu',
cache_dir: tp.Optional[str] = None,
):
if cache_dir is None:
cache_dir = get_audiocraft_cache_dir()
# Return the state dict either from a file or url
file_or_url_or_id = str(file_or_url_or_id)
assert isinstance(file_or_url_or_id, str)
if os.path.isfile(file_or_url_or_id):
return torch.load(file_or_url_or_id, map_location=device)
if os.path.isdir(file_or_url_or_id):
file = f"{file_or_url_or_id}/{filename}"
return torch.load(file, map_location=device)
elif file_or_url_or_id.startswith('https://'):
return torch.hub.load_state_dict_from_url(file_or_url_or_id, map_location=device, check_hash=True)
else:
assert filename is not None, "filename needs to be defined if using HF checkpoints"
file = hf_hub_download(
repo_id=file_or_url_or_id,
filename=filename,
cache_dir=cache_dir,
library_name="audiocraft",
library_version=audiocraft.__version__,
)
return torch.load(file, map_location=device)
def load_compression_model_ckpt(file_or_url_or_id: tp.Union[Path, str], cache_dir: tp.Optional[str] = None):
return _get_state_dict(file_or_url_or_id, filename="compression_state_dict.bin", cache_dir=cache_dir)
def load_compression_model(
file_or_url_or_id: tp.Union[Path, str],
device="cpu",
cache_dir: tp.Optional[str] = None,
):
pkg = load_compression_model_ckpt(file_or_url_or_id, cache_dir=cache_dir)
if 'pretrained' in pkg:
return CompressionModel.get_pretrained(pkg['pretrained'], device=device)
cfg = OmegaConf.create(pkg['xp.cfg'])
cfg.device = str(device)
model = builders.get_compression_model(cfg)
model.load_state_dict(pkg["best_state"])
model.eval()
return model
def load_lm_model_ckpt(file_or_url_or_id: tp.Union[Path, str], cache_dir: tp.Optional[str] = None):
return _get_state_dict(file_or_url_or_id, filename="state_dict.bin", cache_dir=cache_dir)
def _delete_param(cfg: DictConfig, full_name: str):
parts = full_name.split('.')
for part in parts[:-1]:
if part in cfg:
cfg = cfg[part]
else:
return
OmegaConf.set_struct(cfg, False)
if parts[-1] in cfg:
del cfg[parts[-1]]
OmegaConf.set_struct(cfg, True)
def load_lm_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None):
pkg = load_lm_model_ckpt(file_or_url_or_id, cache_dir=cache_dir)
cfg = OmegaConf.create(pkg['xp.cfg'])
cfg.device = str(device)
if cfg.device == 'cpu':
cfg.dtype = 'float32'
else:
cfg.dtype = 'float16'
_delete_param(cfg, 'conditioners.self_wav.chroma_stem.cache_path')
_delete_param(cfg, 'conditioners.args.merge_text_conditions_p')
_delete_param(cfg, 'conditioners.args.drop_desc_p')
model = builders.get_lm_model(cfg)
model.load_state_dict(pkg['best_state'])
model.eval()
model.cfg = cfg
return model
def load_lm_model_magnet(file_or_url_or_id: tp.Union[Path, str], compression_model_frame_rate: int,
device='cpu', cache_dir: tp.Optional[str] = None):
pkg = load_lm_model_ckpt(file_or_url_or_id, cache_dir=cache_dir)
cfg = OmegaConf.create(pkg['xp.cfg'])
cfg.device = str(device)
if cfg.device == 'cpu':
cfg.dtype = 'float32'
else:
cfg.dtype = 'float16'
_delete_param(cfg, 'conditioners.args.merge_text_conditions_p')
_delete_param(cfg, 'conditioners.args.drop_desc_p')
cfg.transformer_lm.compression_model_framerate = compression_model_frame_rate
cfg.transformer_lm.segment_duration = cfg.dataset.segment_duration
cfg.transformer_lm.span_len = cfg.masking.span_len
# MAGNeT models v1 support only xformers backend.
from audiocraft.modules.transformer import set_efficient_attention_backend
if cfg.transformer_lm.memory_efficient:
set_efficient_attention_backend("xformers")
model = builders.get_lm_model(cfg)
model.load_state_dict(pkg['best_state'])
model.eval()
model.cfg = cfg
return model
def load_dit_model_melodyflow(file_or_url_or_id: tp.Union[Path, str],
device='cpu', cache_dir: tp.Optional[str] = None):
pkg = load_lm_model_ckpt(file_or_url_or_id, cache_dir=cache_dir)
cfg = OmegaConf.create(pkg['xp.cfg'])
cfg.device = str(device)
if cfg.device == 'cpu' or cfg.device == 'mps':
cfg.dtype = 'float32'
else:
cfg.dtype = 'bfloat16'
_delete_param(cfg, 'conditioners.args.merge_text_conditions_p')
_delete_param(cfg, 'conditioners.args.drop_desc_p')
model = builders.get_dit_model(cfg)
model.load_state_dict(pkg['best_state'])
model.eval()
model.cfg = cfg
return model
def load_mbd_ckpt(file_or_url_or_id: tp.Union[Path, str],
filename: tp.Optional[str] = None,
cache_dir: tp.Optional[str] = None):
return _get_state_dict(file_or_url_or_id, filename=filename, cache_dir=cache_dir)
def load_diffusion_models(file_or_url_or_id: tp.Union[Path, str],
device='cpu',
filename: tp.Optional[str] = None,
cache_dir: tp.Optional[str] = None):
pkg = load_mbd_ckpt(file_or_url_or_id, filename=filename, cache_dir=cache_dir)
models = []
processors = []
cfgs = []
sample_rate = pkg['sample_rate']
for i in range(pkg['n_bands']):
cfg = pkg[i]['cfg']
model = builders.get_diffusion_model(cfg)
model_dict = pkg[i]['model_state']
model.load_state_dict(model_dict)
model.to(device)
processor = builders.get_processor(cfg=cfg.processor, sample_rate=sample_rate)
processor_dict = pkg[i]['processor_state']
processor.load_state_dict(processor_dict)
processor.to(device)
models.append(model)
processors.append(processor)
cfgs.append(cfg)
return models, processors, cfgs
def load_audioseal_models(
file_or_url_or_id: tp.Union[Path, str],
device="cpu",
filename: tp.Optional[str] = None,
cache_dir: tp.Optional[str] = None,
):
detector_ckpt = _get_state_dict(
file_or_url_or_id,
filename=f"detector_{filename}.pth",
device=device,
cache_dir=cache_dir,
)
assert (
"model" in detector_ckpt
), f"No model state dict found in {file_or_url_or_id}/detector_{filename}.pth"
detector_state = detector_ckpt["model"]
generator_ckpt = _get_state_dict(
file_or_url_or_id,
filename=f"generator_{filename}.pth",
device=device,
cache_dir=cache_dir,
)
assert (
"model" in generator_ckpt
), f"No model state dict found in {file_or_url_or_id}/generator_{filename}.pth"
generator_state = generator_ckpt["model"]
def load_model_config():
if Path(file_or_url_or_id).joinpath(f"{filename}.yaml").is_file():
return OmegaConf.load(Path(file_or_url_or_id).joinpath(f"{filename}.yaml"))
elif file_or_url_or_id.startswith("https://"):
import requests # type: ignore
resp = requests.get(f"{file_or_url_or_id}/{filename}.yaml")
return OmegaConf.create(resp.text)
else:
file = hf_hub_download(
repo_id=file_or_url_or_id,
filename=f"{filename}.yaml",
cache_dir=cache_dir,
library_name="audiocraft",
library_version=audiocraft.__version__,
)
return OmegaConf.load(file)
try:
cfg = load_model_config()
except Exception as exc: # noqa
cfg_fp = (
Path(__file__)
.parents[2]
.joinpath("config", "model", "watermark", "default.yaml")
)
cfg = OmegaConf.load(cfg_fp)
OmegaConf.resolve(cfg)
model = builders.get_watermark_model(cfg)
model.generator.load_state_dict(generator_state)
model.detector.load_state_dict(detector_state)
return model.to(device)
|