File size: 21,364 Bytes
9d0d223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under thmage license found in the
# LICENSE file in the root directory of this source tree.

import spaces
import argparse
import logging
import os
from pathlib import Path
import subprocess as sp
import sys
from tempfile import NamedTemporaryFile
import time
import typing as tp
import warnings

import torch
import gradio as gr

from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_read, audio_write
from audiocraft.models import MelodyFlow


MODEL = None  # Last used model
SPACE_ID = os.environ.get('SPACE_ID', '')
MODEL_PREFIX = os.environ.get('MODEL_PREFIX', 'facebook/')
IS_HF_SPACE = (MODEL_PREFIX + "MelodyFlow") in SPACE_ID
MAX_BATCH_SIZE = 12
N_REPEATS = 3
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call

EULER = "euler"
MIDPOINT = "midpoint"


def interrupt():
    global INTERRUPTING
    INTERRUPTING = True


class FileCleaner:
    def __init__(self, file_lifetime: float = 3600):
        self.file_lifetime = file_lifetime
        self.files = []

    def add(self, path: tp.Union[str, Path]):
        self._cleanup()
        self.files.append((time.time(), Path(path)))

    def _cleanup(self):
        now = time.time()
        for time_added, path in list(self.files):
            if now - time_added > self.file_lifetime:
                if path.exists():
                    path.unlink()
                self.files.pop(0)
            else:
                break


file_cleaner = FileCleaner()


def make_waveform(*args, **kwargs):
    # Further remove some warnings.
    be = time.time()
    with warnings.catch_warnings():
        warnings.simplefilter('ignore')
        out = gr.make_waveform(*args, **kwargs)
        print("Make a video took", time.time() - be)
        return out


def load_model(version=(MODEL_PREFIX + "melodyflow-t24-30secs")):
    global MODEL
    print("Loading model", version)
    if MODEL is None or MODEL.name != version:
        # Clear PyTorch CUDA cache and delete model
        del MODEL
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        MODEL = None  # in case loading would crash
        MODEL = MelodyFlow.get_pretrained(version)


def _do_predictions(texts,
                    melodies,
                    solver,
                    steps,
                    target_flowstep,
                    regularize,
                    regularization_strength,
                    duration,
                    progress=False,
                    ):
    MODEL.set_generation_params(solver=solver,
                                steps=steps,
                                duration=duration,)
    MODEL.set_editing_params(solver=solver,
                             steps=steps,
                             target_flowstep=target_flowstep,
                             regularize=regularize,
                             lambda_kl=regularization_strength)
    print("new batch", len(texts), texts, [None if m is None else m for m in melodies])
    be = time.time()
    processed_melodies = []
    target_sr = 48000
    target_ac = 2
    for melody in melodies:
        if melody is None:
            processed_melodies.append(None)
        else:
            melody, sr = audio_read(melody)
            if melody.dim() == 2:
                melody = melody[None]
            if melody.shape[-1] > int(sr * MODEL.duration):
                melody = melody[..., :int(sr * MODEL.duration)]
            melody = convert_audio(melody, sr, target_sr, target_ac)
            melody = MODEL.encode_audio(melody.to(MODEL.device))
            processed_melodies.append(melody)

    try:
        if any(m is not None for m in processed_melodies):
            outputs = MODEL.edit(
                prompt_tokens=torch.cat(processed_melodies, dim=0).repeat(len(texts), 1, 1),
                descriptions=texts,
                src_descriptions=[""] * len(texts),
                progress=progress,
                return_tokens=False,
            )
        else:
            outputs = MODEL.generate(texts, progress=progress, return_tokens=False)
    except RuntimeError as e:
        raise gr.Error("Error while generating " + e.args[0])
    outputs = outputs.detach().cpu().float()
    out_wavs = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, output, MODEL.sample_rate, strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
            out_wavs.append(file.name)
            file_cleaner.add(file.name)
    print("batch finished", len(texts), time.time() - be)
    print("Tempfiles currently stored: ", len(file_cleaner.files))
    return out_wavs


@spaces.GPU(duration=30)
def predict(model, text,
                 solver, steps, target_flowstep,
                 regularize,
                 regularization_strength,
                 duration,
                 melody=None,
                 model_path=None,
                 progress=gr.Progress()):
    if melody is not None:
        if solver == MIDPOINT:
            steps = steps//2
        else:
            steps = steps//5

    global INTERRUPTING
    INTERRUPTING = False
    progress(0, desc="Loading model...")
    if model_path:
        model_path = model_path.strip()
        if not Path(model_path).exists():
            raise gr.Error(f"Model path {model_path} doesn't exist.")
        if not Path(model_path).is_dir():
            raise gr.Error(f"Model path {model_path} must be a folder containing "
                           "state_dict.bin and compression_state_dict_.bin.")
        model = model_path

    load_model(model)

    max_generated = 0

    def _progress(generated, to_generate):
        nonlocal max_generated
        max_generated = max(generated, max_generated)
        progress((min(max_generated, to_generate), to_generate))
        if INTERRUPTING:
            raise gr.Error("Interrupted.")
    MODEL.set_custom_progress_callback(_progress)

    wavs = _do_predictions(
        [text] * N_REPEATS, [melody],
        solver=solver,
        steps=steps,
        target_flowstep=target_flowstep,
        regularize=regularize,
        regularization_strength=regularization_strength,
        duration=duration,
        progress=True,)

    outputs_ = [wav for wav in wavs]
    return tuple(outputs_)


def toggle_audio_src(choice):
    if choice == "mic":
        return gr.update(sources=["microphone", "upload"], value=None, label="Microphone")
    else:
        return gr.update(sources=["upload", "microphone"], value=None, label="File")


def toggle_melody(melody):
    if melody is None:
        return gr.update(value=MIDPOINT)
    else:
        return gr.update(value=EULER)


def toggle_solver(solver, melody):
    if melody is None:
        if solver == MIDPOINT:
            return gr.update(value=64.0, minimum=2, maximum=128.0, step=2.0), gr.update(interactive=False, value=1.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=True, value=30.0)
        else:
            return gr.update(value=64.0, minimum=1, maximum=128.0, step=1.0), gr.update(interactive=False, value=1.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=True, value=30.0)
    else:
        if solver == MIDPOINT:
            return gr.update(value=128, minimum=4.0, maximum=256.0, step=4.0), gr.update(interactive=True, value=0.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=False, value=0.0)
        else:
            return gr.update(value=125, minimum=5.0, maximum=250.0, step=5.0), gr.update(interactive=True, value=0.0), gr.update(interactive=True, value=True), gr.update(interactive=True, value=0.2), gr.update(interactive=False, value=0.0)

def ui_local(launch_kwargs):
    with gr.Blocks() as interface:
        gr.Markdown(
            """
            # MelodyFlow
            This is your private demo for [MelodyFlow](https://github.com/facebookresearch/audiocraft),
            A fast text-guided music generation and editing model based on a single-stage flow matching DiT
            presented at: ["High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching"] (https://huggingface.co/papers/2407.03648)
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Input Text", interactive=True)
                    melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File or Microphone",
                                      interactive=True, elem_id="melody-input", min_length=1)
                with gr.Row():
                    submit = gr.Button("Submit")
                    # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
                    _ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
                with gr.Row():
                    model = gr.Radio([(MODEL_PREFIX + "melodyflow-t24-30secs")],
                                     label="Model", value=(MODEL_PREFIX + "melodyflow-t24-30secs"), interactive=True)
                    model_path = gr.Text(label="Model Path (custom models)")
                with gr.Row():
                    solver = gr.Radio([EULER, MIDPOINT],
                                      label="ODE Solver", value=MIDPOINT, interactive=True)
                    steps = gr.Slider(label="Inference steps", minimum=2.0, maximum=128.0,
                                      step=2.0, value=128.0, interactive=True)
                    duration = gr.Slider(label="Duration", minimum=1.0, maximum=30.0, value=30.0, interactive=True)
                with gr.Row():
                    target_flowstep = gr.Slider(label="Target Flow step", minimum=0.0,
                                                maximum=1.0, value=0.0, interactive=False)
                    regularize = gr.Checkbox(label="Regularize", value=False, interactive=False)
                    regularization_strength = gr.Slider(
                        label="Regularization Strength", minimum=0.0, maximum=1.0, value=0.2, interactive=False)
            with gr.Column():
                audio_outputs = [
                    gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath', show_download_button=False, show_share_button=False) for i in range(N_REPEATS)]
        submit.click(fn=predict,
                     inputs=[model, text,
                             solver,
                             steps,
                             target_flowstep,
                             regularize,
                             regularization_strength,
                             duration,
                             melody,
                             model_path,],
                     outputs=[o for o in audio_outputs])
        melody.change(toggle_melody, melody, [solver])
        solver.change(toggle_solver, [solver, melody], [steps, target_flowstep,
                      regularize, regularization_strength, duration])
        gr.Examples(
            fn=predict,
            examples=[
                [
                    (MODEL_PREFIX + "melodyflow-t24-30secs"),
                    "80s electronic track with melodic synthesizers, catchy beat and groovy bass.",
                    MIDPOINT,
                    64,
                    1.0,
                    False,
                    0.0,
                    30.0,
                    None,
                ],
                [
                    (MODEL_PREFIX + "melodyflow-t24-30secs"),
                    "A cheerful country song with acoustic guitars accompanied by a nice piano melody.",
                    EULER,
                    125,
                    0.0,
                    True,
                    0.2,
                    -1.0,
                    "./assets/bolero_ravel.mp3",
                ],
            ],

            inputs=[model, text, solver, steps, target_flowstep,
                    regularize,
                    regularization_strength, duration, melody,],
            outputs=[audio_outputs],
            cache_examples=False,
        )

        gr.Markdown(
            """
            ### More details

            The model will generate a short music extract based on the description you provided.
            The model can generate or edit up to 30 seconds of audio in one pass.

            The model was trained with description from a stock music catalog, descriptions that will work best
            should include some level of details on the instruments present, along with some intended use case
            (e.g. adding "perfect for a commercial" can somehow help).

            You can optionally provide a reference audio from which the model will elaborate an edited version
            based on the text description, using MelodyFlow's regularized latent inversion.

            **WARNING:** Choosing long durations will take a longer time to generate.

            Available models are:
            1. facebook/melodyflow-t24-30secs (1B)

            See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md)
            for more details.
            """
        )

        interface.queue().launch(**launch_kwargs)

def ui_hf(launch_kwargs):
    with gr.Blocks() as interface:
        gr.Markdown(
            """
            # MelodyFlow
            This is the demo for [MelodyFlow](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md),
            a fast text-guided music generation and editing model based on a single-stage flow matching DiT
            presented at: ["High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching"](https://huggingface.co/papers/2407.03648).
            Use of this demo is subject to [Meta's AI Terms of Service](https://www.facebook.com/legal/ai-terms).
            <br/>
            <a href="https://huggingface.co/spaces/facebook/MelodyFlow?duplicate=true"
                style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
            <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
                src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
            for longer sequences, more control and no queue.</p>
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Input Text", interactive=True)
                    melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File or Microphone",
                                      interactive=True, elem_id="melody-input", min_length=1)
                with gr.Row():
                    submit = gr.Button("Submit")
                    # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
                    _ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
                with gr.Row():
                    model = gr.Radio([(MODEL_PREFIX + "melodyflow-t24-30secs")],
                                     label="Model", value=(MODEL_PREFIX + "melodyflow-t24-30secs"), interactive=True)
                with gr.Row():
                    solver = gr.Radio([EULER, MIDPOINT],
                                      label="ODE Solver", value=MIDPOINT, interactive=True)
                    steps = gr.Slider(label="Inference steps", minimum=2.0, maximum=128.0,
                                      step=2.0, value=128.0, interactive=True)
                    duration = gr.Slider(label="Duration", minimum=1.0, maximum=30.0, value=30.0, interactive=True)
                with gr.Row():
                    target_flowstep = gr.Slider(label="Target Flow step", minimum=0.0,
                                                maximum=1.0, value=0.0, interactive=False)
                    regularize = gr.Checkbox(label="Regularize", value=False, interactive=False)
                    regularization_strength = gr.Slider(
                        label="Regularization Strength", minimum=0.0, maximum=1.0, value=0.2, interactive=False)
            with gr.Column():
                audio_outputs = [
                    gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath', show_download_button=False, show_share_button=False) for i in range(N_REPEATS)]
        submit.click(fn=predict,
                     inputs=[model, text,
                             solver,
                             steps,
                             target_flowstep,
                             regularize,
                             regularization_strength,
                             duration,
                             melody,],
                     outputs=[o for o in audio_outputs])
        melody.change(toggle_melody, melody, [solver])
        solver.change(toggle_solver, [solver, melody], [steps, target_flowstep,
                      regularize, regularization_strength, duration])
        gr.Examples(
            fn=predict,
            examples=[
                [
                    (MODEL_PREFIX + "melodyflow-t24-30secs"),
                    "80s electronic track with melodic synthesizers, catchy beat and groovy bass.",
                    MIDPOINT,
                    64,
                    1.0,
                    False,
                    0.0,
                    30.0,
                    None,
                ],
                [
                    (MODEL_PREFIX + "melodyflow-t24-30secs"),
                    "A cheerful country song with acoustic guitars accompanied by a nice piano melody.",
                    EULER,
                    125,
                    0.0,
                    True,
                    0.2,
                    -1.0,
                    "./assets/bolero_ravel.mp3",
                ],
            ],

            inputs=[model, text, solver, steps, target_flowstep,
                    regularize,
                    regularization_strength, duration, melody,],
            outputs=[audio_outputs],
            cache_examples=False,
        )

        gr.Markdown("""
        ### More details

        The model will generate or edit up to 30 seconds of audio based on the description you provided.
        The model was trained with description from a stock music catalog, descriptions that will work best
        should include some level of details on the instruments present, along with some intended use case
        (e.g. adding "perfect for a commercial" can somehow help).

        You can optionally provide a reference audio from which the model will elaborate an edited version
        based on the text description, using MelodyFlow's regularized latent inversion.

        You can access more control (longer generation, more models etc.) by clicking
        the <a href="https://huggingface.co/spaces/facebook/MelodyFlow?duplicate=true"
                style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
            <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
                src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
        (you will then need a paid GPU from HuggingFace).
        This gradio demo can also be run locally (best with GPU).

        See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md)
        for more details.
        """)

        interface.queue().launch(**launch_kwargs)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--listen',
        type=str,
        default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
        help='IP to listen on for connections to Gradio',
    )
    parser.add_argument(
        '--username', type=str, default='', help='Username for authentication'
    )
    parser.add_argument(
        '--password', type=str, default='', help='Password for authentication'
    )
    parser.add_argument(
        '--server_port',
        type=int,
        default=0,
        help='Port to run the server listener on',
    )
    parser.add_argument(
        '--inbrowser', action='store_true', help='Open in browser'
    )
    parser.add_argument(
        '--share', action='store_true', help='Share the gradio UI'
    )

    args = parser.parse_args()

    launch_kwargs = {}
    launch_kwargs['server_name'] = args.listen

    if args.username and args.password:
        launch_kwargs['auth'] = (args.username, args.password)
    if args.server_port:
        launch_kwargs['server_port'] = args.server_port
    if args.inbrowser:
        launch_kwargs['inbrowser'] = args.inbrowser
    if args.share:
        launch_kwargs['share'] = args.share

    logging.basicConfig(level=logging.INFO, stream=sys.stderr)

    # Show the interface
    if IS_HF_SPACE:
        ui_hf(launch_kwargs)
    else:
        ui_local(launch_kwargs)