Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,364 Bytes
9d0d223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under thmage license found in the
# LICENSE file in the root directory of this source tree.
import spaces
import argparse
import logging
import os
from pathlib import Path
import subprocess as sp
import sys
from tempfile import NamedTemporaryFile
import time
import typing as tp
import warnings
import torch
import gradio as gr
from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_read, audio_write
from audiocraft.models import MelodyFlow
MODEL = None # Last used model
SPACE_ID = os.environ.get('SPACE_ID', '')
MODEL_PREFIX = os.environ.get('MODEL_PREFIX', 'facebook/')
IS_HF_SPACE = (MODEL_PREFIX + "MelodyFlow") in SPACE_ID
MAX_BATCH_SIZE = 12
N_REPEATS = 3
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call
EULER = "euler"
MIDPOINT = "midpoint"
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def load_model(version=(MODEL_PREFIX + "melodyflow-t24-30secs")):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
# Clear PyTorch CUDA cache and delete model
del MODEL
if torch.cuda.is_available():
torch.cuda.empty_cache()
MODEL = None # in case loading would crash
MODEL = MelodyFlow.get_pretrained(version)
def _do_predictions(texts,
melodies,
solver,
steps,
target_flowstep,
regularize,
regularization_strength,
duration,
progress=False,
):
MODEL.set_generation_params(solver=solver,
steps=steps,
duration=duration,)
MODEL.set_editing_params(solver=solver,
steps=steps,
target_flowstep=target_flowstep,
regularize=regularize,
lambda_kl=regularization_strength)
print("new batch", len(texts), texts, [None if m is None else m for m in melodies])
be = time.time()
processed_melodies = []
target_sr = 48000
target_ac = 2
for melody in melodies:
if melody is None:
processed_melodies.append(None)
else:
melody, sr = audio_read(melody)
if melody.dim() == 2:
melody = melody[None]
if melody.shape[-1] > int(sr * MODEL.duration):
melody = melody[..., :int(sr * MODEL.duration)]
melody = convert_audio(melody, sr, target_sr, target_ac)
melody = MODEL.encode_audio(melody.to(MODEL.device))
processed_melodies.append(melody)
try:
if any(m is not None for m in processed_melodies):
outputs = MODEL.edit(
prompt_tokens=torch.cat(processed_melodies, dim=0).repeat(len(texts), 1, 1),
descriptions=texts,
src_descriptions=[""] * len(texts),
progress=progress,
return_tokens=False,
)
else:
outputs = MODEL.generate(texts, progress=progress, return_tokens=False)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
outputs = outputs.detach().cpu().float()
out_wavs = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
out_wavs.append(file.name)
file_cleaner.add(file.name)
print("batch finished", len(texts), time.time() - be)
print("Tempfiles currently stored: ", len(file_cleaner.files))
return out_wavs
@spaces.GPU(duration=30)
def predict(model, text,
solver, steps, target_flowstep,
regularize,
regularization_strength,
duration,
melody=None,
model_path=None,
progress=gr.Progress()):
if melody is not None:
if solver == MIDPOINT:
steps = steps//2
else:
steps = steps//5
global INTERRUPTING
INTERRUPTING = False
progress(0, desc="Loading model...")
if model_path:
model_path = model_path.strip()
if not Path(model_path).exists():
raise gr.Error(f"Model path {model_path} doesn't exist.")
if not Path(model_path).is_dir():
raise gr.Error(f"Model path {model_path} must be a folder containing "
"state_dict.bin and compression_state_dict_.bin.")
model = model_path
load_model(model)
max_generated = 0
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
wavs = _do_predictions(
[text] * N_REPEATS, [melody],
solver=solver,
steps=steps,
target_flowstep=target_flowstep,
regularize=regularize,
regularization_strength=regularization_strength,
duration=duration,
progress=True,)
outputs_ = [wav for wav in wavs]
return tuple(outputs_)
def toggle_audio_src(choice):
if choice == "mic":
return gr.update(sources=["microphone", "upload"], value=None, label="Microphone")
else:
return gr.update(sources=["upload", "microphone"], value=None, label="File")
def toggle_melody(melody):
if melody is None:
return gr.update(value=MIDPOINT)
else:
return gr.update(value=EULER)
def toggle_solver(solver, melody):
if melody is None:
if solver == MIDPOINT:
return gr.update(value=64.0, minimum=2, maximum=128.0, step=2.0), gr.update(interactive=False, value=1.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=True, value=30.0)
else:
return gr.update(value=64.0, minimum=1, maximum=128.0, step=1.0), gr.update(interactive=False, value=1.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=True, value=30.0)
else:
if solver == MIDPOINT:
return gr.update(value=128, minimum=4.0, maximum=256.0, step=4.0), gr.update(interactive=True, value=0.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=False, value=0.0)
else:
return gr.update(value=125, minimum=5.0, maximum=250.0, step=5.0), gr.update(interactive=True, value=0.0), gr.update(interactive=True, value=True), gr.update(interactive=True, value=0.2), gr.update(interactive=False, value=0.0)
def ui_local(launch_kwargs):
with gr.Blocks() as interface:
gr.Markdown(
"""
# MelodyFlow
This is your private demo for [MelodyFlow](https://github.com/facebookresearch/audiocraft),
A fast text-guided music generation and editing model based on a single-stage flow matching DiT
presented at: ["High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching"] (https://huggingface.co/papers/2407.03648)
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", interactive=True)
melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File or Microphone",
interactive=True, elem_id="melody-input", min_length=1)
with gr.Row():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Row():
model = gr.Radio([(MODEL_PREFIX + "melodyflow-t24-30secs")],
label="Model", value=(MODEL_PREFIX + "melodyflow-t24-30secs"), interactive=True)
model_path = gr.Text(label="Model Path (custom models)")
with gr.Row():
solver = gr.Radio([EULER, MIDPOINT],
label="ODE Solver", value=MIDPOINT, interactive=True)
steps = gr.Slider(label="Inference steps", minimum=2.0, maximum=128.0,
step=2.0, value=128.0, interactive=True)
duration = gr.Slider(label="Duration", minimum=1.0, maximum=30.0, value=30.0, interactive=True)
with gr.Row():
target_flowstep = gr.Slider(label="Target Flow step", minimum=0.0,
maximum=1.0, value=0.0, interactive=False)
regularize = gr.Checkbox(label="Regularize", value=False, interactive=False)
regularization_strength = gr.Slider(
label="Regularization Strength", minimum=0.0, maximum=1.0, value=0.2, interactive=False)
with gr.Column():
audio_outputs = [
gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath', show_download_button=False, show_share_button=False) for i in range(N_REPEATS)]
submit.click(fn=predict,
inputs=[model, text,
solver,
steps,
target_flowstep,
regularize,
regularization_strength,
duration,
melody,
model_path,],
outputs=[o for o in audio_outputs])
melody.change(toggle_melody, melody, [solver])
solver.change(toggle_solver, [solver, melody], [steps, target_flowstep,
regularize, regularization_strength, duration])
gr.Examples(
fn=predict,
examples=[
[
(MODEL_PREFIX + "melodyflow-t24-30secs"),
"80s electronic track with melodic synthesizers, catchy beat and groovy bass.",
MIDPOINT,
64,
1.0,
False,
0.0,
30.0,
None,
],
[
(MODEL_PREFIX + "melodyflow-t24-30secs"),
"A cheerful country song with acoustic guitars accompanied by a nice piano melody.",
EULER,
125,
0.0,
True,
0.2,
-1.0,
"./assets/bolero_ravel.mp3",
],
],
inputs=[model, text, solver, steps, target_flowstep,
regularize,
regularization_strength, duration, melody,],
outputs=[audio_outputs],
cache_examples=False,
)
gr.Markdown(
"""
### More details
The model will generate a short music extract based on the description you provided.
The model can generate or edit up to 30 seconds of audio in one pass.
The model was trained with description from a stock music catalog, descriptions that will work best
should include some level of details on the instruments present, along with some intended use case
(e.g. adding "perfect for a commercial" can somehow help).
You can optionally provide a reference audio from which the model will elaborate an edited version
based on the text description, using MelodyFlow's regularized latent inversion.
**WARNING:** Choosing long durations will take a longer time to generate.
Available models are:
1. facebook/melodyflow-t24-30secs (1B)
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md)
for more details.
"""
)
interface.queue().launch(**launch_kwargs)
def ui_hf(launch_kwargs):
with gr.Blocks() as interface:
gr.Markdown(
"""
# MelodyFlow
This is the demo for [MelodyFlow](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md),
a fast text-guided music generation and editing model based on a single-stage flow matching DiT
presented at: ["High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching"](https://huggingface.co/papers/2407.03648).
Use of this demo is subject to [Meta's AI Terms of Service](https://www.facebook.com/legal/ai-terms).
<br/>
<a href="https://huggingface.co/spaces/facebook/MelodyFlow?duplicate=true"
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
for longer sequences, more control and no queue.</p>
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", interactive=True)
melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File or Microphone",
interactive=True, elem_id="melody-input", min_length=1)
with gr.Row():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Row():
model = gr.Radio([(MODEL_PREFIX + "melodyflow-t24-30secs")],
label="Model", value=(MODEL_PREFIX + "melodyflow-t24-30secs"), interactive=True)
with gr.Row():
solver = gr.Radio([EULER, MIDPOINT],
label="ODE Solver", value=MIDPOINT, interactive=True)
steps = gr.Slider(label="Inference steps", minimum=2.0, maximum=128.0,
step=2.0, value=128.0, interactive=True)
duration = gr.Slider(label="Duration", minimum=1.0, maximum=30.0, value=30.0, interactive=True)
with gr.Row():
target_flowstep = gr.Slider(label="Target Flow step", minimum=0.0,
maximum=1.0, value=0.0, interactive=False)
regularize = gr.Checkbox(label="Regularize", value=False, interactive=False)
regularization_strength = gr.Slider(
label="Regularization Strength", minimum=0.0, maximum=1.0, value=0.2, interactive=False)
with gr.Column():
audio_outputs = [
gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath', show_download_button=False, show_share_button=False) for i in range(N_REPEATS)]
submit.click(fn=predict,
inputs=[model, text,
solver,
steps,
target_flowstep,
regularize,
regularization_strength,
duration,
melody,],
outputs=[o for o in audio_outputs])
melody.change(toggle_melody, melody, [solver])
solver.change(toggle_solver, [solver, melody], [steps, target_flowstep,
regularize, regularization_strength, duration])
gr.Examples(
fn=predict,
examples=[
[
(MODEL_PREFIX + "melodyflow-t24-30secs"),
"80s electronic track with melodic synthesizers, catchy beat and groovy bass.",
MIDPOINT,
64,
1.0,
False,
0.0,
30.0,
None,
],
[
(MODEL_PREFIX + "melodyflow-t24-30secs"),
"A cheerful country song with acoustic guitars accompanied by a nice piano melody.",
EULER,
125,
0.0,
True,
0.2,
-1.0,
"./assets/bolero_ravel.mp3",
],
],
inputs=[model, text, solver, steps, target_flowstep,
regularize,
regularization_strength, duration, melody,],
outputs=[audio_outputs],
cache_examples=False,
)
gr.Markdown("""
### More details
The model will generate or edit up to 30 seconds of audio based on the description you provided.
The model was trained with description from a stock music catalog, descriptions that will work best
should include some level of details on the instruments present, along with some intended use case
(e.g. adding "perfect for a commercial" can somehow help).
You can optionally provide a reference audio from which the model will elaborate an edited version
based on the text description, using MelodyFlow's regularized latent inversion.
You can access more control (longer generation, more models etc.) by clicking
the <a href="https://huggingface.co/spaces/facebook/MelodyFlow?duplicate=true"
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
(you will then need a paid GPU from HuggingFace).
This gradio demo can also be run locally (best with GPU).
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md)
for more details.
""")
interface.queue().launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
args = parser.parse_args()
launch_kwargs = {}
launch_kwargs['server_name'] = args.listen
if args.username and args.password:
launch_kwargs['auth'] = (args.username, args.password)
if args.server_port:
launch_kwargs['server_port'] = args.server_port
if args.inbrowser:
launch_kwargs['inbrowser'] = args.inbrowser
if args.share:
launch_kwargs['share'] = args.share
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
# Show the interface
if IS_HF_SPACE:
ui_hf(launch_kwargs)
else:
ui_local(launch_kwargs)
|