Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
from torch.optim import Optimizer | |
from torch.optim.lr_scheduler import _LRScheduler | |
class CosineLRScheduler(_LRScheduler): | |
"""Cosine LR scheduler. | |
Args: | |
optimizer (Optimizer): Torch optimizer. | |
warmup_steps (int): Number of warmup steps. | |
total_steps (int): Total number of steps. | |
lr_min_ratio (float): Minimum learning rate. | |
cycle_length (float): Cycle length. | |
""" | |
def __init__(self, optimizer: Optimizer, total_steps: int, warmup_steps: int, | |
lr_min_ratio: float = 0.0, cycle_length: float = 1.0): | |
self.warmup_steps = warmup_steps | |
assert self.warmup_steps >= 0 | |
self.total_steps = total_steps | |
assert self.total_steps >= 0 | |
self.lr_min_ratio = lr_min_ratio | |
self.cycle_length = cycle_length | |
super().__init__(optimizer) | |
def _get_sched_lr(self, lr: float, step: int): | |
if step < self.warmup_steps: | |
lr_ratio = step / self.warmup_steps | |
lr = lr_ratio * lr | |
elif step <= self.total_steps: | |
s = (step - self.warmup_steps) / (self.total_steps - self.warmup_steps) | |
lr_ratio = self.lr_min_ratio + 0.5 * (1 - self.lr_min_ratio) * \ | |
(1. + math.cos(math.pi * s / self.cycle_length)) | |
lr = lr_ratio * lr | |
else: | |
lr_ratio = self.lr_min_ratio | |
lr = lr_ratio * lr | |
return lr | |
def get_lr(self): | |
return [self._get_sched_lr(lr, self.last_epoch) for lr in self.base_lrs] | |