Gael Le Lan
Initial commit
9d0d223
raw
history blame
8.91 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import Any
import torch
import torch.optim
import torch.distributed as dist
logger = logging.getLogger(__name__)
_params_t = Any
def to_real(x):
if torch.is_complex(x):
return x.real
else:
return x
class DAdaptAdam(torch.optim.Optimizer):
"""Adam with D-Adaptation automatic step-sizes.
Leave LR set to 1 unless you encounter instability.
Args:
params (iterable):
Iterable of parameters to optimize or dicts defining parameter groups.
lr (float):
Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate.
betas (tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
momentum (float):
Momentum value in the range [0,1) (default: 0.9).
eps (float):
Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-8).
weight_decay (float):
Weight decay, i.e. a L2 penalty (default: 0).
log_every (int):
Log using print every k steps, default 0 (no logging).
decouple (boolean):
Use AdamW style decoupled weight decay
d0 (float):
Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing.
growth_rate (float):
prevent the D estimate from growing faster than this multiplicative rate.
Default is inf, for unrestricted. Values like 1.02 give a kind of learning
rate warmup effect.
fsdp_in_use (bool):
If you're using sharded parameters, this should be set to True. The optimizer
will attempt to auto-detect this, but if you're using an implementation other
than PyTorch's builtin version, the auto-detection won't work.
"""
def __init__(self, params, lr=1.0,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
log_every=0,
decouple=True,
d0=1e-6,
growth_rate=float('inf')):
if not 0.0 < d0:
raise ValueError("Invalid d0 value: {}".format(d0))
if not 0.0 < lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 < eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if decouple:
logger.info("Using decoupled weight decay")
from .fsdp import is_fsdp_used
fsdp_in_use = is_fsdp_used()
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay,
d=d0,
k=0,
gsq_weighted=0.0,
log_every=log_every,
decouple=decouple,
growth_rate=growth_rate,
fsdp_in_use=fsdp_in_use)
super().__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self):
return False
@property
def supports_flat_params(self):
return True
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
g_sq = 0.0
sksq_weighted = 0.0
sk_l1 = 0.0
lr = max(group['lr'] for group in self.param_groups)
group = self.param_groups[0]
gsq_weighted = group['gsq_weighted']
d = group['d']
dlr = d*lr
growth_rate = group['growth_rate']
decouple = group['decouple']
fsdp_in_use = group['fsdp_in_use']
log_every = group['log_every']
beta1, beta2 = group['betas']
for group in self.param_groups:
group_lr = group['lr']
decay = group['weight_decay']
k = group['k']
eps = group['eps']
if group_lr not in [lr, 0.0]:
raise RuntimeError("Setting different lr values in different parameter "
"groups is only supported for values of 0")
for p in group['params']:
if p.grad is None:
continue
if hasattr(p, "_fsdp_flattened"):
fsdp_in_use = True
grad = p.grad.data
# Apply weight decay (coupled variant)
if decay != 0 and not decouple:
grad.add_(p.data, alpha=decay)
state = self.state[p]
# State initialization
if 'step' not in state:
state['step'] = 0
state['s'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach()
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach()
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(
to_real(p.data), memory_format=torch.preserve_format).detach()
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
grad_grad = to_real(grad * grad.conj())
# Adam EMA updates
if group_lr > 0:
exp_avg.mul_(beta1).add_(grad, alpha=dlr*(1-beta1))
exp_avg_sq.mul_(beta2).add_(grad_grad, alpha=1-beta2)
denom = exp_avg_sq.sqrt().add_(eps)
g_sq += grad_grad.div_(denom).sum().item()
s = state['s']
s.mul_(beta2).add_(grad, alpha=dlr*(1-beta2))
sksq_weighted += to_real(s * s.conj()).div_(denom).sum().item()
sk_l1 += s.abs().sum().item()
######
gsq_weighted = beta2*gsq_weighted + g_sq*(dlr**2)*(1-beta2)
d_hat = d
# if we have not done any progres, return
# if we have any gradients available, will have sk_l1 > 0 (unless \|g\|=0)
if sk_l1 == 0:
return loss
if lr > 0.0:
if fsdp_in_use:
dist_tensor = torch.zeros(3, device='cuda')
dist_tensor[0] = sksq_weighted
dist_tensor[1] = gsq_weighted
dist_tensor[2] = sk_l1
dist.all_reduce(dist_tensor, op=dist.ReduceOp.SUM)
global_sksq_weighted = dist_tensor[0]
global_gsq_weighted = dist_tensor[1]
global_sk_l1 = dist_tensor[2]
else:
global_sksq_weighted = sksq_weighted
global_gsq_weighted = gsq_weighted
global_sk_l1 = sk_l1
d_hat = (global_sksq_weighted/(1-beta2) - global_gsq_weighted)/global_sk_l1
d = max(d, min(d_hat, d*growth_rate))
if log_every > 0 and k % log_every == 0:
logger.info(
f"(k={k}) dlr: {dlr:1.1e} d_hat: {d_hat:1.1e}, d: {d:1.8}. "
f"sksq_weighted={global_sksq_weighted:1.1e} gsq_weighted={global_gsq_weighted:1.1e} "
f"sk_l1={global_sk_l1:1.1e}{' (FSDP)' if fsdp_in_use else ''}")
for group in self.param_groups:
group['gsq_weighted'] = gsq_weighted
group['d'] = d
group_lr = group['lr']
decay = group['weight_decay']
k = group['k']
eps = group['eps']
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
state['step'] += 1
denom = exp_avg_sq.sqrt().add_(eps)
denom = denom.type(p.type())
# Apply weight decay (decoupled variant)
if decay != 0 and decouple and group_lr > 0:
p.data.add_(p.data, alpha=-decay * dlr)
# Take step
p.data.addcdiv_(exp_avg, denom, value=-1)
group['k'] = k + 1
return loss