Spaces:
Running
on
Zero
Running
on
Zero
# pyre-strict | |
import typing as tp | |
import torch | |
# Based on code from https://github.com/pix2pixzero/pix2pix-zero | |
def noise_regularization( | |
e_t: torch.Tensor, | |
noise_pred_optimal: torch.Tensor, | |
lambda_kl: float, | |
lambda_ac: float, | |
num_reg_steps: int, | |
num_ac_rolls: int, | |
generator: tp.Optional[torch._C.Generator] = None, | |
) -> torch.Tensor: | |
should_move_back_to_cpu = e_t.device.type == "mps" | |
# print(should_move_back_to_cpu) | |
if should_move_back_to_cpu: | |
e_t = e_t.to("cpu") | |
noise_pred_optimal = noise_pred_optimal.to("cpu") | |
for _outer in range(num_reg_steps): | |
if lambda_kl > 0: | |
_var = torch.autograd.Variable(e_t.detach().clone(), requires_grad=True) | |
l_kld = patchify_latents_kl_divergence(_var, noise_pred_optimal) | |
l_kld.backward() | |
_grad = _var.grad.detach() # pyre-ignore | |
_grad = torch.clip(_grad, -100, 100) | |
e_t = e_t - lambda_kl * _grad | |
if lambda_ac > 0: | |
for _inner in range(num_ac_rolls): | |
_var = torch.autograd.Variable(e_t.detach().clone(), requires_grad=True) | |
l_ac = auto_corr_loss(_var.unsqueeze(1), generator=generator) | |
l_ac.backward() # pyre-ignore | |
_grad = _var.grad.detach() / num_ac_rolls | |
e_t = e_t - lambda_ac * _grad | |
e_t = e_t.detach() | |
return e_t if not should_move_back_to_cpu else e_t.to("mps") | |
# Based on code from https://github.com/pix2pixzero/pix2pix-zero | |
def auto_corr_loss( | |
x: torch.Tensor, | |
random_shift: bool = True, | |
generator: tp.Optional[torch._C.Generator] = None, | |
) -> tp.Union[float, torch.Tensor]: | |
B, C, H, W = x.shape | |
assert B == 1 | |
x = x.squeeze(0) | |
# x must be shape [C,H,W] now | |
reg_loss = 0.0 | |
for ch_idx in range(x.shape[0]): | |
noise = x[ch_idx][None, None, :, :] | |
while True: | |
if random_shift: | |
roll_amount = torch.randint( | |
0, noise.shape[2] // 2, (1,), generator=generator | |
).item() | |
else: | |
roll_amount = 1 | |
reg_loss += torch.pow( | |
(noise * torch.roll(noise, shifts=roll_amount, dims=2)).mean(), 2 # pyre-ignore | |
) | |
reg_loss += torch.pow( | |
(noise * torch.roll(noise, shifts=roll_amount, dims=3)).mean(), 2 # pyre-ignore | |
) | |
if noise.shape[2] <= 8: | |
break | |
noise = torch.nn.functional.avg_pool2d(noise, kernel_size=2) | |
return reg_loss | |
def patchify_latents_kl_divergence( | |
x0: torch.Tensor, x1: torch.Tensor, patch_size: int = 4, num_channels: int = 4 | |
) -> torch.Tensor: | |
def patchify_tensor(input_tensor: torch.Tensor) -> torch.Tensor: | |
patches = ( | |
input_tensor.unfold(1, patch_size, patch_size) | |
.unfold(2, patch_size, patch_size) | |
.unfold(3, patch_size, patch_size) | |
) | |
patches = patches.contiguous().view(-1, num_channels, patch_size, patch_size) | |
return patches | |
x0 = patchify_tensor(x0) | |
x1 = patchify_tensor(x1) | |
kl = latents_kl_divergence(x0, x1).sum() | |
return kl | |
def latents_kl_divergence(x0: torch.Tensor, x1: torch.Tensor) -> torch.Tensor: | |
EPSILON = 1e-6 | |
x0 = x0.view(x0.shape[0], x0.shape[1], -1) | |
x1 = x1.view(x1.shape[0], x1.shape[1], -1) | |
mu0 = x0.mean(dim=-1) | |
mu1 = x1.mean(dim=-1) | |
var0 = x0.var(dim=-1) | |
var1 = x1.var(dim=-1) | |
kl = ( | |
torch.log((var1 + EPSILON) / (var0 + EPSILON)) | |
+ (var0 + torch.pow((mu0 - mu1), 2)) / (var1 + EPSILON) | |
- 1 | |
) | |
kl = torch.abs(kl).sum(dim=-1) | |
return kl | |