# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import julius import pesq import torch from audiocraft.metrics.pesq import PesqMetric from ..common_utils import TempDirMixin, get_batch_white_noise def tensor_pesq(y_pred: torch.Tensor, y: torch.Tensor, sr: int): # pesq returns error if no speech is detected, so we catch it if sr != 16000: y_pred = julius.resample_frac(y_pred, sr, 16000) y = julius.resample_frac(y, sr, 16000) P, n = 0, 0 for ii in range(y_pred.size(0)): try: # torchmetrics crashes when there is one error in the batch so doing it manually.. P += pesq.pesq(16000, y[ii, 0].cpu().numpy(), y_pred[ii, 0].cpu().numpy()) n += 1 except pesq.NoUtterancesError: # this error can append when the sample don't contain speech pass p = P / n if n != 0 else 0.0 return p class TestPesq(TempDirMixin): def test(self): sample_rate = 16_000 duration = 20 channel = 1 bs = 10 wavs = get_batch_white_noise(bs, channel, int(sample_rate * duration)) pesq_metric = PesqMetric(sample_rate=sample_rate) pesq1 = pesq_metric(wavs, wavs) print(f"Pesq between 2 identical white noises: {pesq1}") assert pesq1 > 1 pesq2 = tensor_pesq(wavs, wavs, 16000) assert torch.allclose(pesq1, torch.tensor(pesq2))