Spaces:
Running
on
A10G
Running
on
A10G
""" | |
Copyright (c) Meta Platforms, Inc. and affiliates. | |
All rights reserved. | |
This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
from tempfile import NamedTemporaryFile | |
import torch | |
import gradio as gr | |
from audiocraft.data.audio_utils import convert_audio | |
from audiocraft.data.audio import audio_write | |
from hf_loading import get_pretrained | |
MODEL = None | |
def load_model(): | |
print("Loading model") | |
return get_pretrained("melody") | |
def predict(texts, melodies): | |
global MODEL | |
if MODEL is None: | |
MODEL = load_model() | |
duration = 12 | |
MODEL.set_generation_params(duration=duration) | |
print(texts, melodies) | |
processed_melodies = [] | |
target_sr = 32000 | |
target_ac = 1 | |
for melody in melodies: | |
if melody is None: | |
processed_melodies.append(None) | |
else: | |
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t() | |
if melody.dim() == 1: | |
melody = melody[None] | |
melody = melody[..., :int(sr * duration)] | |
melody = convert_audio(melody, sr, target_sr, target_ac) | |
processed_melodies.append(melody) | |
outputs = MODEL.generate_with_chroma( | |
descriptions=texts, | |
melody_wavs=processed_melodies, | |
melody_sample_rate=target_sr, | |
progress=False | |
) | |
outputs = outputs.detach().cpu().float() | |
out_files = [] | |
for output in outputs: | |
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: | |
audio_write(file.name, output, MODEL.sample_rate, strategy="loudness", add_suffix=False) | |
out_files.append(file.name) | |
return [out_files] | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# MusicGen | |
This is the demo for MusicGen, a simple and controllable model for music generation | |
presented at: "Simple and Controllable Music Generation". | |
Enter the description of the music you want and an optional audio used for melody conditioning. | |
The model will extract the broad melody from the uploaded wav if provided. | |
This will generate a 12s extract with the `melody` model. | |
**Warning:** Due to high demand, the demo might get stuck, in that case please refresh | |
the page! Normal processing time is ~30 seconds. | |
For generating longer sequences (up to 30 seconds) and skipping queue, you can duplicate | |
to full demo space, which contains more control and upgrade to GPU in the settings. | |
<br/> | |
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
</p> | |
You can also use your own GPU or a Google Colab by following the instructions on our repo. | |
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) | |
for more details. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
text = gr.Text(label="Input Text", interactive=True) | |
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True) | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
with gr.Column(): | |
output = gr.Audio(label="Generated Music", type="filepath", format="wav") | |
submit.click(predict, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=12) | |
gr.Examples( | |
fn=predict, | |
examples=[ | |
[ | |
"An 80s driving pop song with heavy drums and synth pads in the background", | |
"./assets/bach.mp3", | |
], | |
[ | |
"A cheerful country song with acoustic guitars", | |
"./assets/bolero_ravel.mp3", | |
], | |
[ | |
"90s rock song with electric guitar and heavy drums", | |
None, | |
], | |
[ | |
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", | |
"./assets/bach.mp3", | |
], | |
[ | |
"lofi slow bpm electro chill with organic samples", | |
None, | |
], | |
], | |
inputs=[text, melody], | |
outputs=[output] | |
) | |
demo.queue(max_size=15).launch() | |