Spaces:
Build error
Build error
File size: 13,540 Bytes
94ada0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""Wrap the generator to render a sequence of images"""
import torch
import torch.nn.functional as F
import numpy as np
from torch import random
import tqdm
import copy
import trimesh
class Renderer(object):
def __init__(self, generator, discriminator=None, program=None):
self.generator = generator
self.discriminator = discriminator
self.sample_tmp = 0.65
self.program = program
self.seed = 0
if (program is not None) and (len(program.split(':')) == 2):
from training.dataset import ImageFolderDataset
self.image_data = ImageFolderDataset(program.split(':')[1])
self.program = program.split(':')[0]
else:
self.image_data = None
def set_random_seed(self, seed):
self.seed = seed
torch.manual_seed(seed)
np.random.seed(seed)
def __call__(self, *args, **kwargs):
self.generator.eval() # eval mode...
if self.program is None:
if hasattr(self.generator, 'get_final_output'):
return self.generator.get_final_output(*args, **kwargs)
return self.generator(*args, **kwargs)
if self.image_data is not None:
batch_size = 1
indices = (np.random.rand(batch_size) * len(self.image_data)).tolist()
rimages = np.stack([self.image_data._load_raw_image(int(i)) for i in indices], 0)
rimages = torch.from_numpy(rimages).float().to(kwargs['z'].device) / 127.5 - 1
kwargs['img'] = rimages
outputs = getattr(self, f"render_{self.program}")(*args, **kwargs)
if self.image_data is not None:
imgs = outputs if not isinstance(outputs, tuple) else outputs[0]
size = imgs[0].size(-1)
rimg = F.interpolate(rimages, (size, size), mode='bicubic', align_corners=False)
imgs = [torch.cat([img, rimg], 0) for img in imgs]
outputs = imgs if not isinstance(outputs, tuple) else (imgs, outputs[1])
return outputs
def get_additional_params(self, ws, t=0):
gen = self.generator.synthesis
batch_size = ws.size(0)
kwargs = {}
if not hasattr(gen, 'get_latent_codes'):
return kwargs
s_val, t_val, r_val = [[0, 0, 0]], [[0.5, 0.5, 0.5]], [0.]
# kwargs["transformations"] = gen.get_transformations(batch_size=batch_size, mode=[s_val, t_val, r_val], device=ws.device)
# kwargs["bg_rotation"] = gen.get_bg_rotation(batch_size, device=ws.device)
# kwargs["light_dir"] = gen.get_light_dir(batch_size, device=ws.device)
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
kwargs["camera_matrices"] = self.get_camera_traj(t, ws.size(0), device=ws.device)
return kwargs
def get_camera_traj(self, t, batch_size=1, traj_type='pigan', device='cpu'):
gen = self.generator.synthesis
if traj_type == 'pigan':
range_u, range_v = gen.C.range_u, gen.C.range_v
pitch = 0.2 * np.cos(t * 2 * np.pi) + np.pi/2
yaw = 0.4 * np.sin(t * 2 * np.pi)
u = (yaw - range_u[0]) / (range_u[1] - range_u[0])
v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
cam = gen.get_camera(batch_size=batch_size, mode=[u, v, 0.5], device=device)
else:
raise NotImplementedError
return cam
def render_rotation_camera(self, *args, **kwargs):
batch_size, n_steps = 2, kwargs["n_steps"]
gen = self.generator.synthesis
if 'img' not in kwargs:
ws = self.generator.mapping(*args, **kwargs)
else:
ws, _ = self.generator.encoder(kwargs['img'])
# ws = ws.repeat(batch_size, 1, 1)
# kwargs["not_render_background"] = True
if hasattr(gen, 'get_latent_codes'):
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
kwargs.pop('img', None)
out = []
cameras = []
relatve_range_u = kwargs['relative_range_u']
u_samples = np.linspace(relatve_range_u[0], relatve_range_u[1], n_steps)
for step in tqdm.tqdm(range(n_steps)):
# Set Camera
u = u_samples[step]
kwargs["camera_matrices"] = gen.get_camera(batch_size=batch_size, mode=[u, 0.5, 0.5], device=ws.device)
cameras.append(gen.get_camera(batch_size=batch_size, mode=[u, 0.5, 0.5], device=ws.device))
with torch.no_grad():
out_i = gen(ws, **kwargs)
if isinstance(out_i, dict):
out_i = out_i['img']
out.append(out_i)
if 'return_cameras' in kwargs and kwargs["return_cameras"]:
return out, cameras
else:
return out
def render_rotation_camera3(self, styles=None, *args, **kwargs):
gen = self.generator.synthesis
n_steps = 36 # 120
if styles is None:
batch_size = 2
if 'img' not in kwargs:
ws = self.generator.mapping(*args, **kwargs)
else:
ws = self.generator.encoder(kwargs['img'])['ws']
# ws = ws.repeat(batch_size, 1, 1)
else:
ws = styles
batch_size = ws.size(0)
# kwargs["not_render_background"] = True
# Get Random codes and bg rotation
self.sample_tmp = 0.72
if hasattr(gen, 'get_latent_codes'):
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
kwargs.pop('img', None)
# if getattr(gen, "use_noise", False):
# from dnnlib.geometry import extract_geometry
# kwargs['meshes'] = {}
# low_res, high_res = gen.resolution_vol, gen.img_resolution
# res = low_res * 2
# while res <= high_res:
# kwargs['meshes'][res] = [trimesh.Trimesh(*extract_geometry(gen, ws, resolution=res, threshold=30.))]
# kwargs['meshes'][res] += [
# torch.randn(len(kwargs['meshes'][res][0].vertices),
# 2, device=ws.device)[kwargs['meshes'][res][0].faces]]
# res = res * 2
# if getattr(gen, "use_noise", False):
# kwargs['voxel_noise'] = gen.get_voxel_field(styles=ws, n_vols=2048, return_noise=True, sphere_noise=True)
# if getattr(gen, "use_voxel_noise", False):
# kwargs['voxel_noise'] = gen.get_voxel_field(styles=ws, n_vols=128, return_noise=True)
kwargs['noise_mode'] = 'const'
out = []
tspace = np.linspace(0, 1, n_steps)
range_u, range_v = gen.C.range_u, gen.C.range_v
for step in tqdm.tqdm(range(n_steps)):
t = tspace[step]
pitch = 0.2 * np.cos(t * 2 * np.pi) + np.pi/2
yaw = 0.4 * np.sin(t * 2 * np.pi)
u = (yaw - range_u[0]) / (range_u[1] - range_u[0])
v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
kwargs["camera_matrices"] = gen.get_camera(
batch_size=batch_size, mode=[u, v, t], device=ws.device)
with torch.no_grad():
out_i = gen(ws, **kwargs)
if isinstance(out_i, dict):
out_i = out_i['img']
out.append(out_i)
return out
def render_rotation_both(self, *args, **kwargs):
gen = self.generator.synthesis
batch_size, n_steps = 1, 36
if 'img' not in kwargs:
ws = self.generator.mapping(*args, **kwargs)
else:
ws, _ = self.generator.encoder(kwargs['img'])
ws = ws.repeat(batch_size, 1, 1)
# kwargs["not_render_background"] = True
# Get Random codes and bg rotation
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
kwargs.pop('img', None)
out = []
tspace = np.linspace(0, 1, n_steps)
range_u, range_v = gen.C.range_u, gen.C.range_v
for step in tqdm.tqdm(range(n_steps)):
t = tspace[step]
pitch = 0.2 * np.cos(t * 2 * np.pi) + np.pi/2
yaw = 0.4 * np.sin(t * 2 * np.pi)
u = (yaw - range_u[0]) / (range_u[1] - range_u[0])
v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
kwargs["camera_matrices"] = gen.get_camera(
batch_size=batch_size, mode=[u, v, 0.5], device=ws.device)
with torch.no_grad():
out_i = gen(ws, **kwargs)
if isinstance(out_i, dict):
out_i = out_i['img']
kwargs_n = copy.deepcopy(kwargs)
kwargs_n.update({'render_option': 'early,no_background,up64,depth,normal'})
out_n = gen(ws, **kwargs_n)
out_n = F.interpolate(out_n,
size=(out_i.size(-1), out_i.size(-1)),
mode='bicubic', align_corners=True)
out_i = torch.cat([out_i, out_n], 0)
out.append(out_i)
return out
def render_rotation_grid(self, styles=None, return_cameras=False, *args, **kwargs):
gen = self.generator.synthesis
if styles is None:
batch_size = 1
ws = self.generator.mapping(*args, **kwargs)
ws = ws.repeat(batch_size, 1, 1)
else:
ws = styles
batch_size = ws.size(0)
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
kwargs.pop('img', None)
if getattr(gen, "use_voxel_noise", False):
kwargs['voxel_noise'] = gen.get_voxel_field(styles=ws, n_vols=128, return_noise=True)
out = []
cameras = []
range_u, range_v = gen.C.range_u, gen.C.range_v
a_steps, b_steps = 6, 3
aspace = np.linspace(-0.4, 0.4, a_steps)
bspace = np.linspace(-0.2, 0.2, b_steps) * -1
for b in tqdm.tqdm(range(b_steps)):
for a in range(a_steps):
t_a = aspace[a]
t_b = bspace[b]
camera_mat = gen.camera_matrix.repeat(batch_size, 1, 1).to(ws.device)
loc_x = np.cos(t_b) * np.cos(t_a)
loc_y = np.cos(t_b) * np.sin(t_a)
loc_z = np.sin(t_b)
loc = torch.tensor([[loc_x, loc_y, loc_z]], dtype=torch.float32).to(ws.device)
from dnnlib.camera import look_at
R = look_at(loc)
RT = torch.eye(4).reshape(1, 4, 4).repeat(batch_size, 1, 1)
RT[:, :3, :3] = R
RT[:, :3, -1] = loc
world_mat = RT.to(ws.device)
#kwargs["camera_matrices"] = gen.get_camera(
# batch_size=batch_size, mode=[u, v, 0.5], device=ws.device)
kwargs["camera_matrices"] = (camera_mat, world_mat, "random", None)
with torch.no_grad():
out_i = gen(ws, **kwargs)
if isinstance(out_i, dict):
out_i = out_i['img']
# kwargs_n = copy.deepcopy(kwargs)
# kwargs_n.update({'render_option': 'early,no_background,up64,depth,normal'})
# out_n = gen(ws, **kwargs_n)
# out_n = F.interpolate(out_n,
# size=(out_i.size(-1), out_i.size(-1)),
# mode='bicubic', align_corners=True)
# out_i = torch.cat([out_i, out_n], 0)
out.append(out_i)
if return_cameras:
return out, cameras
else:
return out
def render_rotation_camera_grid(self, *args, **kwargs):
batch_size, n_steps = 1, 60
gen = self.generator.synthesis
bbox_generator = self.generator.synthesis.boundingbox_generator
ws = self.generator.mapping(*args, **kwargs)
ws = ws.repeat(batch_size, 1, 1)
# Get Random codes and bg rotation
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
del kwargs['render_option']
out = []
for v in [0.15, 0.5, 1.05]:
for step in tqdm.tqdm(range(n_steps)):
# Set Camera
u = step * 1.0 / (n_steps - 1) - 1.0
kwargs["camera_matrices"] = gen.get_camera(batch_size=batch_size, mode=[u, v, 0.5], device=ws.device)
with torch.no_grad():
out_i = gen(ws, render_option=None, **kwargs)
if isinstance(out_i, dict):
out_i = out_i['img']
# option_n = 'early,no_background,up64,depth,direct_depth'
# option_n = 'early,up128,no_background,depth,normal'
# out_n = gen(ws, render_option=option_n, **kwargs)
# out_n = F.interpolate(out_n,
# size=(out_i.size(-1), out_i.size(-1)),
# mode='bicubic', align_corners=True)
# out_i = torch.cat([out_i, out_n], 0)
out.append(out_i)
# out += out[::-1]
return out |