Spaces:
Running
on
Zero
Running
on
Zero
File size: 58,121 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import random
import warnings
from itertools import product
from typing import Dict, Iterable, List, Optional, Sequence, Tuple, Union
import mmengine
import numpy as np
import mmcv
from mmcv.image.geometric import _scale_size
from .base import BaseTransform
from .builder import TRANSFORMS
from .utils import cache_randomness
from .wrappers import Compose
Number = Union[int, float]
@TRANSFORMS.register_module()
class Normalize(BaseTransform):
"""Normalize the image.
Required Keys:
- img
Modified Keys:
- img
Added Keys:
- img_norm_cfg
- mean
- std
- to_rgb
Args:
mean (sequence): Mean values of 3 channels.
std (sequence): Std values of 3 channels.
to_rgb (bool): Whether to convert the image from BGR to RGB before
normlizing the image. If ``to_rgb=True``, the order of mean and std
should be RGB. If ``to_rgb=False``, the order of mean and std
should be the same order of the image. Defaults to True.
"""
def __init__(self,
mean: Sequence[Number],
std: Sequence[Number],
to_rgb: bool = True) -> None:
self.mean = np.array(mean, dtype=np.float32)
self.std = np.array(std, dtype=np.float32)
self.to_rgb = to_rgb
def transform(self, results: dict) -> dict:
"""Function to normalize images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Normalized results, key 'img_norm_cfg' key is added in to
result dict.
"""
results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std,
self.to_rgb)
results['img_norm_cfg'] = dict(
mean=self.mean, std=self.std, to_rgb=self.to_rgb)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})'
return repr_str
@TRANSFORMS.register_module()
class Resize(BaseTransform):
"""Resize images & bbox & seg & keypoints.
This transform resizes the input image according to ``scale`` or
``scale_factor``. Bboxes, seg map and keypoints are then resized with the
same scale factor.
if ``scale`` and ``scale_factor`` are both set, it will use ``scale`` to
resize.
Required Keys:
- img
- gt_bboxes (optional)
- gt_seg_map (optional)
- gt_keypoints (optional)
Modified Keys:
- img
- gt_bboxes
- gt_seg_map
- gt_keypoints
- img_shape
Added Keys:
- scale
- scale_factor
- keep_ratio
Args:
scale (int or tuple): Images scales for resizing. Defaults to None
scale_factor (float or tuple[float]): Scale factors for resizing.
Defaults to None.
keep_ratio (bool): Whether to keep the aspect ratio when resizing the
image. Defaults to False.
clip_object_border (bool): Whether to clip the objects
outside the border of the image. In some dataset like MOT17, the gt
bboxes are allowed to cross the border of images. Therefore, we
don't need to clip the gt bboxes in these cases. Defaults to True.
backend (str): Image resize backend, choices are 'cv2' and 'pillow'.
These two backends generates slightly different results. Defaults
to 'cv2'.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
backend, "nearest", "bilinear" for 'pillow' backend. Defaults
to 'bilinear'.
"""
def __init__(self,
scale: Optional[Union[int, Tuple[int, int]]] = None,
scale_factor: Optional[Union[float, Tuple[float,
float]]] = None,
keep_ratio: bool = False,
clip_object_border: bool = True,
backend: str = 'cv2',
interpolation='bilinear') -> None:
assert scale is not None or scale_factor is not None, (
'`scale` and'
'`scale_factor` can not both be `None`')
if scale is None:
self.scale = None
else:
if isinstance(scale, int):
self.scale = (scale, scale)
else:
self.scale = scale
self.backend = backend
self.interpolation = interpolation
self.keep_ratio = keep_ratio
self.clip_object_border = clip_object_border
if scale_factor is None:
self.scale_factor = None
elif isinstance(scale_factor, float):
self.scale_factor = (scale_factor, scale_factor)
elif isinstance(scale_factor, tuple):
assert (len(scale_factor)) == 2
self.scale_factor = scale_factor
else:
raise TypeError(
f'expect scale_factor is float or Tuple(float), but'
f'get {type(scale_factor)}')
def _resize_img(self, results: dict) -> None:
"""Resize images with ``results['scale']``."""
if results.get('img', None) is not None:
if self.keep_ratio:
img, scale_factor = mmcv.imrescale(
results['img'],
results['scale'],
interpolation=self.interpolation,
return_scale=True,
backend=self.backend)
# the w_scale and h_scale has minor difference
# a real fix should be done in the mmcv.imrescale in the future
new_h, new_w = img.shape[:2]
h, w = results['img'].shape[:2]
w_scale = new_w / w
h_scale = new_h / h
else:
img, w_scale, h_scale = mmcv.imresize(
results['img'],
results['scale'],
interpolation=self.interpolation,
return_scale=True,
backend=self.backend)
results['img'] = img
results['img_shape'] = img.shape[:2]
results['scale_factor'] = (w_scale, h_scale)
results['keep_ratio'] = self.keep_ratio
def _resize_bboxes(self, results: dict) -> None:
"""Resize bounding boxes with ``results['scale_factor']``."""
if results.get('gt_bboxes', None) is not None:
bboxes = results['gt_bboxes'] * np.tile(
np.array(results['scale_factor']), 2)
if self.clip_object_border:
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0,
results['img_shape'][1])
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0,
results['img_shape'][0])
results['gt_bboxes'] = bboxes
def _resize_seg(self, results: dict) -> None:
"""Resize semantic segmentation map with ``results['scale']``."""
if results.get('gt_seg_map', None) is not None:
if self.keep_ratio:
gt_seg = mmcv.imrescale(
results['gt_seg_map'],
results['scale'],
interpolation='nearest',
backend=self.backend)
else:
gt_seg = mmcv.imresize(
results['gt_seg_map'],
results['scale'],
interpolation='nearest',
backend=self.backend)
results['gt_seg_map'] = gt_seg
def _resize_keypoints(self, results: dict) -> None:
"""Resize keypoints with ``results['scale_factor']``."""
if results.get('gt_keypoints', None) is not None:
keypoints = results['gt_keypoints']
keypoints[:, :, :2] = keypoints[:, :, :2] * np.array(
results['scale_factor'])
if self.clip_object_border:
keypoints[:, :, 0] = np.clip(keypoints[:, :, 0], 0,
results['img_shape'][1])
keypoints[:, :, 1] = np.clip(keypoints[:, :, 1], 0,
results['img_shape'][0])
results['gt_keypoints'] = keypoints
def transform(self, results: dict) -> dict:
"""Transform function to resize images, bounding boxes, semantic
segmentation map and keypoints.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
'gt_keypoints', 'scale', 'scale_factor', 'img_shape',
and 'keep_ratio' keys are updated in result dict.
"""
if self.scale:
results['scale'] = self.scale
else:
img_shape = results['img'].shape[:2]
results['scale'] = _scale_size(img_shape[::-1],
self.scale_factor) # type: ignore
self._resize_img(results)
self._resize_bboxes(results)
self._resize_seg(results)
self._resize_keypoints(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(scale={self.scale}, '
repr_str += f'scale_factor={self.scale_factor}, '
repr_str += f'keep_ratio={self.keep_ratio}, '
repr_str += f'clip_object_border={self.clip_object_border}), '
repr_str += f'backend={self.backend}), '
repr_str += f'interpolation={self.interpolation})'
return repr_str
@TRANSFORMS.register_module()
class Pad(BaseTransform):
"""Pad the image & segmentation map.
There are three padding modes: (1) pad to a fixed size and (2) pad to the
minimum size that is divisible by some number. and (3)pad to square. Also,
pad to square and pad to the minimum size can be used as the same time.
Required Keys:
- img
- gt_bboxes (optional)
- gt_seg_map (optional)
Modified Keys:
- img
- gt_seg_map
- img_shape
Added Keys:
- pad_shape
- pad_fixed_size
- pad_size_divisor
Args:
size (tuple, optional): Fixed padding size.
Expected padding shape (w, h). Defaults to None.
size_divisor (int, optional): The divisor of padded size. Defaults to
None.
pad_to_square (bool): Whether to pad the image into a square.
Currently only used for YOLOX. Defaults to False.
pad_val (Number | dict[str, Number], optional): Padding value for if
the pad_mode is "constant". If it is a single number, the value
to pad the image is the number and to pad the semantic
segmentation map is 255. If it is a dict, it should have the
following keys:
- img: The value to pad the image.
- seg: The value to pad the semantic segmentation map.
Defaults to dict(img=0, seg=255).
padding_mode (str): Type of padding. Should be: constant, edge,
reflect or symmetric. Defaults to 'constant'.
- constant: pads with a constant value, this value is specified
with pad_val.
- edge: pads with the last value at the edge of the image.
- reflect: pads with reflection of image without repeating the last
value on the edge. For example, padding [1, 2, 3, 4] with 2
elements on both sides in reflect mode will result in
[3, 2, 1, 2, 3, 4, 3, 2].
- symmetric: pads with reflection of image repeating the last value
on the edge. For example, padding [1, 2, 3, 4] with 2 elements on
both sides in symmetric mode will result in
[2, 1, 1, 2, 3, 4, 4, 3]
"""
def __init__(self,
size: Optional[Tuple[int, int]] = None,
size_divisor: Optional[int] = None,
pad_to_square: bool = False,
pad_val: Union[Number, dict] = dict(img=0, seg=255),
padding_mode: str = 'constant') -> None:
self.size = size
self.size_divisor = size_divisor
if isinstance(pad_val, int):
pad_val = dict(img=pad_val, seg=255)
assert isinstance(pad_val, dict), 'pad_val '
self.pad_val = pad_val
self.pad_to_square = pad_to_square
if pad_to_square:
assert size is None, \
'The size and size_divisor must be None ' \
'when pad2square is True'
else:
assert size is not None or size_divisor is not None, \
'only one of size and size_divisor should be valid'
assert size is None or size_divisor is None
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
self.padding_mode = padding_mode
def _pad_img(self, results: dict) -> None:
"""Pad images according to ``self.size``."""
pad_val = self.pad_val.get('img', 0)
size = None
if self.pad_to_square:
max_size = max(results['img'].shape[:2])
size = (max_size, max_size)
if self.size_divisor is not None:
if size is None:
size = (results['img'].shape[0], results['img'].shape[1])
pad_h = int(np.ceil(
size[0] / self.size_divisor)) * self.size_divisor
pad_w = int(np.ceil(
size[1] / self.size_divisor)) * self.size_divisor
size = (pad_h, pad_w)
elif self.size is not None:
size = self.size[::-1]
if isinstance(pad_val, int) and results['img'].ndim == 3:
pad_val = tuple(pad_val for _ in range(results['img'].shape[2]))
padded_img = mmcv.impad(
results['img'],
shape=size,
pad_val=pad_val,
padding_mode=self.padding_mode)
results['img'] = padded_img
results['pad_shape'] = padded_img.shape
results['pad_fixed_size'] = self.size
results['pad_size_divisor'] = self.size_divisor
results['img_shape'] = padded_img.shape[:2]
def _pad_seg(self, results: dict) -> None:
"""Pad semantic segmentation map according to
``results['pad_shape']``."""
if results.get('gt_seg_map', None) is not None:
pad_val = self.pad_val.get('seg', 255)
if isinstance(pad_val, int) and results['gt_seg_map'].ndim == 3:
pad_val = tuple(
pad_val for _ in range(results['gt_seg_map'].shape[2]))
results['gt_seg_map'] = mmcv.impad(
results['gt_seg_map'],
shape=results['pad_shape'][:2],
pad_val=pad_val,
padding_mode=self.padding_mode)
def transform(self, results: dict) -> dict:
"""Call function to pad images, masks, semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Updated result dict.
"""
self._pad_img(results)
self._pad_seg(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(size={self.size}, '
repr_str += f'size_divisor={self.size_divisor}, '
repr_str += f'pad_to_square={self.pad_to_square}, '
repr_str += f'pad_val={self.pad_val}), '
repr_str += f'padding_mode={self.padding_mode})'
return repr_str
@TRANSFORMS.register_module()
class CenterCrop(BaseTransform):
"""Crop the center of the image, segmentation masks, bounding boxes and key
points. If the crop area exceeds the original image and ``auto_pad`` is
True, the original image will be padded before cropping.
Required Keys:
- img
- gt_seg_map (optional)
- gt_bboxes (optional)
- gt_keypoints (optional)
Modified Keys:
- img
- img_shape
- gt_seg_map (optional)
- gt_bboxes (optional)
- gt_keypoints (optional)
Added Key:
- pad_shape
Args:
crop_size (Union[int, Tuple[int, int]]): Expected size after cropping
with the format of (w, h). If set to an integer, then cropping
width and height are equal to this integer.
auto_pad (bool): Whether to pad the image if it's smaller than the
``crop_size``. Defaults to False.
pad_cfg (dict): Base config for padding. Refer to ``mmcv.Pad`` for
detail. Defaults to ``dict(type='Pad')``.
clip_object_border (bool): Whether to clip the objects
outside the border of the image. In some dataset like MOT17, the
gt bboxes are allowed to cross the border of images. Therefore,
we don't need to clip the gt bboxes in these cases.
Defaults to True.
"""
def __init__(self,
crop_size: Union[int, Tuple[int, int]],
auto_pad: bool = False,
pad_cfg: dict = dict(type='Pad'),
clip_object_border: bool = True) -> None:
super().__init__()
assert isinstance(crop_size, int) or (
isinstance(crop_size, tuple) and len(crop_size) == 2
), 'The expected crop_size is an integer, or a tuple containing two '
'intergers'
if isinstance(crop_size, int):
crop_size = (crop_size, crop_size)
assert crop_size[0] > 0 and crop_size[1] > 0
self.crop_size = crop_size
self.auto_pad = auto_pad
self.pad_cfg = pad_cfg.copy()
# size will be overwritten
if 'size' in self.pad_cfg and auto_pad:
warnings.warn('``size`` is set in ``pad_cfg``,'
'however this argument will be overwritten'
' according to crop size and image size')
self.clip_object_border = clip_object_border
def _crop_img(self, results: dict, bboxes: np.ndarray) -> None:
"""Crop image.
Args:
results (dict): Result dict contains the data to transform.
bboxes (np.ndarray): Shape (4, ), location of cropped bboxes.
"""
if results.get('img', None) is not None:
img = mmcv.imcrop(results['img'], bboxes=bboxes)
img_shape = img.shape[:2] # type: ignore
results['img'] = img
results['img_shape'] = img_shape
results['pad_shape'] = img_shape
def _crop_seg_map(self, results: dict, bboxes: np.ndarray) -> None:
"""Crop semantic segmentation map.
Args:
results (dict): Result dict contains the data to transform.
bboxes (np.ndarray): Shape (4, ), location of cropped bboxes.
"""
if results.get('gt_seg_map', None) is not None:
img = mmcv.imcrop(results['gt_seg_map'], bboxes=bboxes)
results['gt_seg_map'] = img
def _crop_bboxes(self, results: dict, bboxes: np.ndarray) -> None:
"""Update bounding boxes according to CenterCrop.
Args:
results (dict): Result dict contains the data to transform.
bboxes (np.ndarray): Shape (4, ), location of cropped bboxes.
"""
if 'gt_bboxes' in results:
offset_w = bboxes[0]
offset_h = bboxes[1]
bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h])
# gt_bboxes has shape (num_gts, 4) in (tl_x, tl_y, br_x, br_y)
# order.
gt_bboxes = results['gt_bboxes'] - bbox_offset
if self.clip_object_border:
gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0,
results['img'].shape[1])
gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0,
results['img'].shape[0])
results['gt_bboxes'] = gt_bboxes
def _crop_keypoints(self, results: dict, bboxes: np.ndarray) -> None:
"""Update key points according to CenterCrop. Keypoints that not in the
cropped image will be set invisible.
Args:
results (dict): Result dict contains the data to transform.
bboxes (np.ndarray): Shape (4, ), location of cropped bboxes.
"""
if 'gt_keypoints' in results:
offset_w = bboxes[0]
offset_h = bboxes[1]
keypoints_offset = np.array([offset_w, offset_h, 0])
# gt_keypoints has shape (N, NK, 3) in (x, y, visibility) order,
# NK = number of points per object
gt_keypoints = results['gt_keypoints'] - keypoints_offset
# set gt_kepoints out of the result image invisible
height, width = results['img'].shape[:2]
valid_pos = (gt_keypoints[:, :, 0] >=
0) * (gt_keypoints[:, :, 0] <
width) * (gt_keypoints[:, :, 1] >= 0) * (
gt_keypoints[:, :, 1] < height)
gt_keypoints[:, :, 2] = np.where(valid_pos, gt_keypoints[:, :, 2],
0)
gt_keypoints[:, :, 0] = np.clip(gt_keypoints[:, :, 0], 0,
results['img'].shape[1])
gt_keypoints[:, :, 1] = np.clip(gt_keypoints[:, :, 1], 0,
results['img'].shape[0])
results['gt_keypoints'] = gt_keypoints
def transform(self, results: dict) -> dict:
"""Apply center crop on results.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: Results with CenterCropped image and semantic segmentation
map.
"""
crop_width, crop_height = self.crop_size[0], self.crop_size[1]
assert 'img' in results, '`img` is not found in results'
img = results['img']
# img.shape has length 2 for grayscale, length 3 for color
img_height, img_width = img.shape[:2]
if crop_height > img_height or crop_width > img_width:
if self.auto_pad:
# pad the area
img_height = max(img_height, crop_height)
img_width = max(img_width, crop_width)
pad_size = (img_width, img_height)
_pad_cfg = self.pad_cfg.copy()
_pad_cfg.update(dict(size=pad_size))
pad_transform = TRANSFORMS.build(_pad_cfg)
results = pad_transform(results)
else:
crop_height = min(crop_height, img_height)
crop_width = min(crop_width, img_width)
y1 = max(0, int(round((img_height - crop_height) / 2.)))
x1 = max(0, int(round((img_width - crop_width) / 2.)))
y2 = min(img_height, y1 + crop_height) - 1
x2 = min(img_width, x1 + crop_width) - 1
bboxes = np.array([x1, y1, x2, y2])
# crop the image
self._crop_img(results, bboxes)
# crop the gt_seg_map
self._crop_seg_map(results, bboxes)
# crop the bounding box
self._crop_bboxes(results, bboxes)
# crop the keypoints
self._crop_keypoints(results, bboxes)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(crop_size = {self.crop_size}'
repr_str += f', auto_pad={self.auto_pad}'
repr_str += f', pad_cfg={self.pad_cfg}'
repr_str += f',clip_object_border = {self.clip_object_border})'
return repr_str
@TRANSFORMS.register_module()
class RandomGrayscale(BaseTransform):
"""Randomly convert image to grayscale with a probability.
Required Key:
- img
Modified Key:
- img
Added Keys:
- grayscale
- grayscale_weights
Args:
prob (float): Probability that image should be converted to
grayscale. Defaults to 0.1.
keep_channels (bool): Whether keep channel number the same as
input. Defaults to False.
channel_weights (tuple): The grayscale weights of each channel,
and the weights will be normalized. For example, (1, 2, 1)
will be normalized as (0.25, 0.5, 0.25). Defaults to
(1., 1., 1.).
color_format (str): Color format set to be any of 'bgr',
'rgb', 'hsv'. Note: 'hsv' image will be transformed into 'bgr'
format no matter whether it is grayscaled. Defaults to 'bgr'.
"""
def __init__(self,
prob: float = 0.1,
keep_channels: bool = False,
channel_weights: Sequence[float] = (1., 1., 1.),
color_format: str = 'bgr') -> None:
super().__init__()
assert 0. <= prob <= 1., ('The range of ``prob`` value is [0., 1.],' +
f' but got {prob} instead')
self.prob = prob
self.keep_channels = keep_channels
self.channel_weights = channel_weights
assert color_format in ['bgr', 'rgb', 'hsv']
self.color_format = color_format
@cache_randomness
def _random_prob(self):
return random.random()
def transform(self, results: dict) -> dict:
"""Apply random grayscale on results.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: Results with grayscale image.
"""
img = results['img']
# convert hsv to bgr
if self.color_format == 'hsv':
img = mmcv.hsv2bgr(img)
img = img[..., None] if img.ndim == 2 else img
num_output_channels = img.shape[2]
if self._random_prob() < self.prob:
if num_output_channels > 1:
assert num_output_channels == len(
self.channel_weights
), 'The length of ``channel_weights`` are supposed to be '
f'num_output_channels, but got {len(self.channel_weights)}'
' instead.'
normalized_weights = (
np.array(self.channel_weights) / sum(self.channel_weights))
img = (normalized_weights * img).sum(axis=2)
img = img.astype('uint8')
if self.keep_channels:
img = img[:, :, None]
results['img'] = np.dstack(
[img for _ in range(num_output_channels)])
else:
results['img'] = img
return results
img = img.astype('uint8')
results['img'] = img
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(prob = {self.prob}'
repr_str += f', keep_channels = {self.keep_channels}'
repr_str += f', channel_weights = {self.channel_weights}'
repr_str += f', color_format = {self.color_format})'
return repr_str
@TRANSFORMS.register_module()
class MultiScaleFlipAug(BaseTransform):
"""Test-time augmentation with multiple scales and flipping.
An example configuration is as followed:
.. code-block::
dict(
type='MultiScaleFlipAug',
scales=[(1333, 400), (1333, 800)],
flip=True,
transforms=[
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=1),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
``results`` will be resized using all the sizes in ``scales``.
If ``flip`` is True, then flipped results will also be added into output
list.
For the above configuration, there are four combinations of resize
and flip:
- Resize to (1333, 400) + no flip
- Resize to (1333, 400) + flip
- Resize to (1333, 800) + no flip
- resize to (1333, 800) + flip
The four results are then transformed with ``transforms`` argument.
After that, results are wrapped into lists of the same length as below:
.. code-block::
dict(
inputs=[...],
data_samples=[...]
)
Where the length of ``inputs`` and ``data_samples`` are both 4.
Required Keys:
- Depending on the requirements of the ``transforms`` parameter.
Modified Keys:
- All output keys of each transform.
Args:
transforms (list[dict]): Transforms to be applied to each resized
and flipped data.
scales (tuple | list[tuple] | None): Images scales for resizing.
scale_factor (float or tuple[float]): Scale factors for resizing.
Defaults to None.
allow_flip (bool): Whether apply flip augmentation. Defaults to False.
flip_direction (str | list[str]): Flip augmentation directions,
options are "horizontal", "vertical" and "diagonal". If
flip_direction is a list, multiple flip augmentations will be
applied. It has no effect when flip == False. Defaults to
"horizontal".
resize_cfg (dict): Base config for resizing. Defaults to
``dict(type='Resize', keep_ratio=True)``.
flip_cfg (dict): Base config for flipping. Defaults to
``dict(type='RandomFlip')``.
"""
def __init__(
self,
transforms: List[dict],
scales: Optional[Union[Tuple, List[Tuple]]] = None,
scale_factor: Optional[Union[float, List[float]]] = None,
allow_flip: bool = False,
flip_direction: Union[str, List[str]] = 'horizontal',
resize_cfg: dict = dict(type='Resize', keep_ratio=True),
flip_cfg: dict = dict(type='RandomFlip')
) -> None:
super().__init__()
self.transforms = Compose(transforms) # type: ignore
if scales is not None:
self.scales = scales if isinstance(scales, list) else [scales]
self.scale_key = 'scale'
assert mmengine.is_list_of(self.scales, tuple)
else:
# if ``scales`` and ``scale_factor`` both be ``None``
if scale_factor is None:
self.scales = [1.] # type: ignore
elif isinstance(scale_factor, list):
self.scales = scale_factor # type: ignore
else:
self.scales = [scale_factor] # type: ignore
self.scale_key = 'scale_factor'
self.allow_flip = allow_flip
self.flip_direction = flip_direction if isinstance(
flip_direction, list) else [flip_direction]
assert mmengine.is_list_of(self.flip_direction, str)
if not self.allow_flip and self.flip_direction != ['horizontal']:
warnings.warn(
'flip_direction has no effect when flip is set to False')
self.resize_cfg = resize_cfg.copy()
self.flip_cfg = flip_cfg
def transform(self, results: dict) -> Dict:
"""Apply test time augment transforms on results.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: The augmented data, where each value is wrapped
into a list.
"""
data_samples = []
inputs = []
flip_args = [(False, '')]
if self.allow_flip:
flip_args += [(True, direction)
for direction in self.flip_direction]
for scale in self.scales:
for flip, direction in flip_args:
_resize_cfg = self.resize_cfg.copy()
_resize_cfg.update({self.scale_key: scale})
_resize_flip = [_resize_cfg]
if flip:
_flip_cfg = self.flip_cfg.copy()
_flip_cfg.update(prob=1.0, direction=direction)
_resize_flip.append(_flip_cfg)
else:
results['flip'] = False
results['flip_direction'] = None
resize_flip = Compose(_resize_flip)
_results = resize_flip(results.copy())
packed_results = self.transforms(_results) # type: ignore
inputs.append(packed_results['inputs']) # type: ignore
data_samples.append(
packed_results['data_sample']) # type: ignore
return dict(inputs=inputs, data_sample=data_samples)
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(transforms={self.transforms}'
repr_str += f', scales={self.scales}'
repr_str += f', allow_flip={self.allow_flip}'
repr_str += f', flip_direction={self.flip_direction})'
return repr_str
@TRANSFORMS.register_module()
class TestTimeAug(BaseTransform):
"""Test-time augmentation transform.
An example configuration is as followed:
.. code-block::
dict(type='TestTimeAug',
transforms=[
[dict(type='Resize', scale=(1333, 400), keep_ratio=True),
dict(type='Resize', scale=(1333, 800), keep_ratio=True)],
[dict(type='RandomFlip', prob=1.),
dict(type='RandomFlip', prob=0.)],
[dict(type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape',
'img_shape', 'scale_factor', 'flip',
'flip_direction'))]])
``results`` will be transformed using all transforms defined in
``transforms`` arguments.
For the above configuration, there are four combinations of resize
and flip:
- Resize to (1333, 400) + no flip
- Resize to (1333, 400) + flip
- Resize to (1333, 800) + no flip
- resize to (1333, 800) + flip
After that, results are wrapped into lists of the same length as below:
.. code-block::
dict(
inputs=[...],
data_samples=[...]
)
The length of ``inputs`` and ``data_samples`` are both 4.
Required Keys:
- Depending on the requirements of the ``transforms`` parameter.
Modified Keys:
- All output keys of each transform.
Args:
transforms (list[list[dict]]): Transforms to be applied to data sampled
from dataset. ``transforms`` is a list of list, and each list
element usually represents a series of transforms with the same
type and different arguments. Data will be processed by each list
elements sequentially. See more information in :meth:`transform`.
"""
def __init__(self, transforms: list):
for i, transform_list in enumerate(transforms):
for j, transform in enumerate(transform_list):
if isinstance(transform, dict):
transform_list[j] = TRANSFORMS.build(transform)
elif callable(transform):
continue
else:
raise TypeError(
'transform must be callable or a dict, but got'
f' {type(transform)}')
transforms[i] = transform_list
self.subroutines = [
Compose(subroutine) for subroutine in product(*transforms)
]
def transform(self, results: dict) -> dict:
"""Apply all transforms defined in :attr:`transforms` to the results.
As the example given in :obj:`TestTimeAug`, ``transforms`` consists of
2 ``Resize``, 2 ``RandomFlip`` and 1 ``PackDetInputs``.
The data sampled from dataset will be processed as follows:
1. Data will be processed by 2 ``Resize`` and return a list
of 2 results.
2. Each result in list will be further passed to 2
``RandomFlip``, and aggregates into a list of 4 results.
3. Each result will be processed by ``PackDetInputs``, and
return a list of dict.
4. Aggregates the same fields of results, and finally returns
a dict. Each value of the dict represents 4 transformed
results.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: The augmented data, where each value is wrapped
into a list.
"""
results_list = [] # type: ignore
for subroutine in self.subroutines:
result = subroutine(copy.deepcopy(results))
assert isinstance(result, dict), (
f'Data processed by {subroutine} must return a dict, but got '
f'{result}')
assert result is not None, (
f'Data processed by {subroutine} in `TestTimeAug` should not '
'be None! Please check your validation dataset and the '
f'transforms in {subroutine}')
results_list.append(result)
aug_data_dict = {
key: [item[key] for item in results_list] # type: ignore
for key in results_list[0] # type: ignore
}
return aug_data_dict
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += 'transforms=\n'
for subroutine in self.subroutines:
repr_str += f'{repr(subroutine)}\n'
return repr_str
@TRANSFORMS.register_module()
class RandomChoiceResize(BaseTransform):
"""Resize images & bbox & mask from a list of multiple scales.
This transform resizes the input image to some scale. Bboxes and masks are
then resized with the same scale factor. Resize scale will be randomly
selected from ``scales``.
How to choose the target scale to resize the image will follow the rules
below:
- if `scale` is a list of tuple, the target scale is sampled from the list
uniformally.
- if `scale` is a tuple, the target scale will be set to the tuple.
Required Keys:
- img
- gt_bboxes (optional)
- gt_seg_map (optional)
- gt_keypoints (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_seg_map (optional)
- gt_keypoints (optional)
Added Keys:
- scale
- scale_factor
- scale_idx
- keep_ratio
Args:
scales (Union[list, Tuple]): Images scales for resizing.
resize_type (str): The type of resize class to use. Defaults to
"Resize".
**resize_kwargs: Other keyword arguments for the ``resize_type``.
Note:
By defaults, the ``resize_type`` is "Resize", if it's not overwritten
by your registry, it indicates the :class:`mmcv.Resize`. And therefore,
``resize_kwargs`` accepts any keyword arguments of it, like
``keep_ratio``, ``interpolation`` and so on.
If you want to use your custom resize class, the class should accept
``scale`` argument and have ``scale`` attribution which determines the
resize shape.
"""
def __init__(
self,
scales: Sequence[Union[int, Tuple]],
resize_type: str = 'Resize',
**resize_kwargs,
) -> None:
super().__init__()
if isinstance(scales, list):
self.scales = scales
else:
self.scales = [scales]
assert mmengine.is_seq_of(self.scales, (tuple, int))
self.resize_cfg = dict(type=resize_type, **resize_kwargs)
# create a empty Resize object
self.resize = TRANSFORMS.build({'scale': 0, **self.resize_cfg})
@cache_randomness
def _random_select(self) -> Tuple[int, int]:
"""Randomly select an scale from given candidates.
Returns:
(tuple, int): Returns a tuple ``(scale, scale_dix)``,
where ``scale`` is the selected image scale and
``scale_idx`` is the selected index in the given candidates.
"""
scale_idx = np.random.randint(len(self.scales))
scale = self.scales[scale_idx]
return scale, scale_idx
def transform(self, results: dict) -> dict:
"""Apply resize transforms on results from a list of scales.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
'gt_keypoints', 'scale', 'scale_factor', 'img_shape',
and 'keep_ratio' keys are updated in result dict.
"""
target_scale, scale_idx = self._random_select()
self.resize.scale = target_scale
results = self.resize(results)
results['scale_idx'] = scale_idx
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(scales={self.scales}'
repr_str += f', resize_cfg={self.resize_cfg})'
return repr_str
@TRANSFORMS.register_module()
class RandomFlip(BaseTransform):
"""Flip the image & bbox & keypoints & segmentation map. Added or Updated
keys: flip, flip_direction, img, gt_bboxes, gt_seg_map, and
gt_keypoints. There are 3 flip modes:
- ``prob`` is float, ``direction`` is string: the image will be
``direction``ly flipped with probability of ``prob`` .
E.g., ``prob=0.5``, ``direction='horizontal'``,
then image will be horizontally flipped with probability of 0.5.
- ``prob`` is float, ``direction`` is list of string: the image will
be ``direction[i]``ly flipped with probability of
``prob/len(direction)``.
E.g., ``prob=0.5``, ``direction=['horizontal', 'vertical']``,
then image will be horizontally flipped with probability of 0.25,
vertically with probability of 0.25.
- ``prob`` is list of float, ``direction`` is list of string:
given ``len(prob) == len(direction)``, the image will
be ``direction[i]``ly flipped with probability of ``prob[i]``.
E.g., ``prob=[0.3, 0.5]``, ``direction=['horizontal',
'vertical']``, then image will be horizontally flipped with
probability of 0.3, vertically with probability of 0.5.
Required Keys:
- img
- gt_bboxes (optional)
- gt_seg_map (optional)
- gt_keypoints (optional)
Modified Keys:
- img
- gt_bboxes (optional)
- gt_seg_map (optional)
- gt_keypoints (optional)
Added Keys:
- flip
- flip_direction
- swap_seg_labels (optional)
Args:
prob (float | list[float], optional): The flipping probability.
Defaults to None.
direction(str | list[str]): The flipping direction. Options
If input is a list, the length must equal ``prob``. Each
element in ``prob`` indicates the flip probability of
corresponding direction. Defaults to 'horizontal'.
swap_seg_labels (list, optional): The label pair need to be swapped
for ground truth, like 'left arm' and 'right arm' need to be
swapped after horizontal flipping. For example, ``[(1, 5)]``,
where 1/5 is the label of the left/right arm. Defaults to None.
"""
def __init__(self,
prob: Optional[Union[float, Iterable[float]]] = None,
direction: Union[str, Sequence[Optional[str]]] = 'horizontal',
swap_seg_labels: Optional[Sequence] = None) -> None:
if isinstance(prob, list):
assert mmengine.is_list_of(prob, float)
assert 0 <= sum(prob) <= 1
elif isinstance(prob, float):
assert 0 <= prob <= 1
else:
raise ValueError(f'probs must be float or list of float, but \
got `{type(prob)}`.')
self.prob = prob
self.swap_seg_labels = swap_seg_labels
valid_directions = ['horizontal', 'vertical', 'diagonal']
if isinstance(direction, str):
assert direction in valid_directions
elif isinstance(direction, list):
assert mmengine.is_list_of(direction, str)
assert set(direction).issubset(set(valid_directions))
else:
raise ValueError(f'direction must be either str or list of str, \
but got `{type(direction)}`.')
self.direction = direction
if isinstance(prob, list):
assert len(prob) == len(self.direction)
def _flip_bbox(self, bboxes: np.ndarray, img_shape: Tuple[int, int],
direction: str) -> np.ndarray:
"""Flip bboxes horizontally.
Args:
bboxes (numpy.ndarray): Bounding boxes, shape (..., 4*k)
img_shape (tuple[int]): Image shape (height, width)
direction (str): Flip direction. Options are 'horizontal',
'vertical', and 'diagonal'.
Returns:
numpy.ndarray: Flipped bounding boxes.
"""
assert bboxes.shape[-1] % 4 == 0
flipped = bboxes.copy()
h, w = img_shape
if direction == 'horizontal':
flipped[..., 0::4] = w - bboxes[..., 2::4]
flipped[..., 2::4] = w - bboxes[..., 0::4]
elif direction == 'vertical':
flipped[..., 1::4] = h - bboxes[..., 3::4]
flipped[..., 3::4] = h - bboxes[..., 1::4]
elif direction == 'diagonal':
flipped[..., 0::4] = w - bboxes[..., 2::4]
flipped[..., 1::4] = h - bboxes[..., 3::4]
flipped[..., 2::4] = w - bboxes[..., 0::4]
flipped[..., 3::4] = h - bboxes[..., 1::4]
else:
raise ValueError(
f"Flipping direction must be 'horizontal', 'vertical', \
or 'diagonal', but got '{direction}'")
return flipped
def _flip_keypoints(
self,
keypoints: np.ndarray,
img_shape: Tuple[int, int],
direction: str,
) -> np.ndarray:
"""Flip keypoints horizontally, vertically or diagonally.
Args:
keypoints (numpy.ndarray): Keypoints, shape (..., 2)
img_shape (tuple[int]): Image shape (height, width)
direction (str): Flip direction. Options are 'horizontal',
'vertical', and 'diagonal'.
Returns:
numpy.ndarray: Flipped keypoints.
"""
meta_info = keypoints[..., 2:]
keypoints = keypoints[..., :2]
flipped = keypoints.copy()
h, w = img_shape
if direction == 'horizontal':
flipped[..., 0::2] = w - keypoints[..., 0::2]
elif direction == 'vertical':
flipped[..., 1::2] = h - keypoints[..., 1::2]
elif direction == 'diagonal':
flipped[..., 0::2] = w - keypoints[..., 0::2]
flipped[..., 1::2] = h - keypoints[..., 1::2]
else:
raise ValueError(
f"Flipping direction must be 'horizontal', 'vertical', \
or 'diagonal', but got '{direction}'")
flipped = np.concatenate([flipped, meta_info], axis=-1)
return flipped
def _flip_seg_map(self, seg_map: dict, direction: str) -> np.ndarray:
"""Flip segmentation map horizontally, vertically or diagonally.
Args:
seg_map (numpy.ndarray): segmentation map, shape (H, W).
direction (str): Flip direction. Options are 'horizontal',
'vertical'.
Returns:
numpy.ndarray: Flipped segmentation map.
"""
seg_map = mmcv.imflip(seg_map, direction=direction)
if self.swap_seg_labels is not None:
# to handle datasets with left/right annotations
# like 'Left-arm' and 'Right-arm' in LIP dataset
# Modified from https://github.com/openseg-group/openseg.pytorch/blob/master/lib/datasets/tools/cv2_aug_transforms.py # noqa:E501
# Licensed under MIT license
temp = seg_map.copy()
assert isinstance(self.swap_seg_labels, (tuple, list))
for pair in self.swap_seg_labels:
assert isinstance(pair, (tuple, list)) and len(pair) == 2, \
'swap_seg_labels must be a sequence with pair, but got ' \
f'{self.swap_seg_labels}.'
seg_map[temp == pair[0]] = pair[1]
seg_map[temp == pair[1]] = pair[0]
return seg_map
@cache_randomness
def _choose_direction(self) -> str:
"""Choose the flip direction according to `prob` and `direction`"""
if isinstance(self.direction,
Sequence) and not isinstance(self.direction, str):
# None means non-flip
direction_list: list = list(self.direction) + [None]
elif isinstance(self.direction, str):
# None means non-flip
direction_list = [self.direction, None]
if isinstance(self.prob, list):
non_prob: float = 1 - sum(self.prob)
prob_list = self.prob + [non_prob]
elif isinstance(self.prob, float):
non_prob = 1. - self.prob
# exclude non-flip
single_ratio = self.prob / (len(direction_list) - 1)
prob_list = [single_ratio] * (len(direction_list) - 1) + [non_prob]
cur_dir = np.random.choice(direction_list, p=prob_list)
return cur_dir
def _flip(self, results: dict) -> None:
"""Flip images, bounding boxes, semantic segmentation map and
keypoints."""
# flip image
results['img'] = mmcv.imflip(
results['img'], direction=results['flip_direction'])
img_shape = results['img'].shape[:2]
# flip bboxes
if results.get('gt_bboxes', None) is not None:
results['gt_bboxes'] = self._flip_bbox(results['gt_bboxes'],
img_shape,
results['flip_direction'])
# flip keypoints
if results.get('gt_keypoints', None) is not None:
results['gt_keypoints'] = self._flip_keypoints(
results['gt_keypoints'], img_shape, results['flip_direction'])
# flip seg map
if results.get('gt_seg_map', None) is not None:
results['gt_seg_map'] = self._flip_seg_map(
results['gt_seg_map'], direction=results['flip_direction'])
results['swap_seg_labels'] = self.swap_seg_labels
def _flip_on_direction(self, results: dict) -> None:
"""Function to flip images, bounding boxes, semantic segmentation map
and keypoints."""
cur_dir = self._choose_direction()
if cur_dir is None:
results['flip'] = False
results['flip_direction'] = None
else:
results['flip'] = True
results['flip_direction'] = cur_dir
self._flip(results)
def transform(self, results: dict) -> dict:
"""Transform function to flip images, bounding boxes, semantic
segmentation map and keypoints.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Flipped results, 'img', 'gt_bboxes', 'gt_seg_map',
'gt_keypoints', 'flip', and 'flip_direction' keys are
updated in result dict.
"""
self._flip_on_direction(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(prob={self.prob}, '
repr_str += f'direction={self.direction})'
return repr_str
@TRANSFORMS.register_module()
class RandomResize(BaseTransform):
"""Random resize images & bbox & keypoints.
How to choose the target scale to resize the image will follow the rules
below:
- if ``scale`` is a sequence of tuple
.. math::
target\\_scale[0] \\sim Uniform([scale[0][0], scale[1][0]])
.. math::
target\\_scale[1] \\sim Uniform([scale[0][1], scale[1][1]])
Following the resize order of weight and height in cv2, ``scale[i][0]``
is for width, and ``scale[i][1]`` is for height.
- if ``scale`` is a tuple
.. math::
target\\_scale[0] \\sim Uniform([ratio\\_range[0], ratio\\_range[1]])
* scale[0]
.. math::
target\\_scale[1] \\sim Uniform([ratio\\_range[0], ratio\\_range[1]])
* scale[1]
Following the resize order of weight and height in cv2, ``ratio_range[0]``
is for width, and ``ratio_range[1]`` is for height.
- if ``keep_ratio`` is True, the minimum value of ``target_scale`` will be
used to set the shorter side and the maximum value will be used to
set the longer side.
- if ``keep_ratio`` is False, the value of ``target_scale`` will be used to
reisze the width and height accordingly.
Required Keys:
- img
- gt_bboxes
- gt_seg_map
- gt_keypoints
Modified Keys:
- img
- gt_bboxes
- gt_seg_map
- gt_keypoints
- img_shape
Added Keys:
- scale
- scale_factor
- keep_ratio
Args:
scale (tuple or Sequence[tuple]): Images scales for resizing.
Defaults to None.
ratio_range (tuple[float], optional): (min_ratio, max_ratio).
Defaults to None.
resize_type (str): The type of resize class to use. Defaults to
"Resize".
**resize_kwargs: Other keyword arguments for the ``resize_type``.
Note:
By defaults, the ``resize_type`` is "Resize", if it's not overwritten
by your registry, it indicates the :class:`mmcv.Resize`. And therefore,
``resize_kwargs`` accepts any keyword arguments of it, like
``keep_ratio``, ``interpolation`` and so on.
If you want to use your custom resize class, the class should accept
``scale`` argument and have ``scale`` attribution which determines the
resize shape.
"""
def __init__(
self,
scale: Union[Tuple[int, int], Sequence[Tuple[int, int]]],
ratio_range: Tuple[float, float] = None,
resize_type: str = 'Resize',
**resize_kwargs,
) -> None:
self.scale = scale
self.ratio_range = ratio_range
self.resize_cfg = dict(type=resize_type, **resize_kwargs)
# create a empty Reisize object
self.resize = TRANSFORMS.build({'scale': 0, **self.resize_cfg})
@staticmethod
def _random_sample(scales: Sequence[Tuple[int, int]]) -> tuple:
"""Private function to randomly sample a scale from a list of tuples.
Args:
scales (list[tuple]): Images scale range for sampling.
There must be two tuples in scales, which specify the lower
and upper bound of image scales.
Returns:
tuple: The targeted scale of the image to be resized.
"""
assert mmengine.is_list_of(scales, tuple) and len(scales) == 2
scale_0 = [scales[0][0], scales[1][0]]
scale_1 = [scales[0][1], scales[1][1]]
edge_0 = np.random.randint(min(scale_0), max(scale_0) + 1)
edge_1 = np.random.randint(min(scale_1), max(scale_1) + 1)
scale = (edge_0, edge_1)
return scale
@staticmethod
def _random_sample_ratio(scale: tuple, ratio_range: Tuple[float,
float]) -> tuple:
"""Private function to randomly sample a scale from a tuple.
A ratio will be randomly sampled from the range specified by
``ratio_range``. Then it would be multiplied with ``scale`` to
generate sampled scale.
Args:
scale (tuple): Images scale base to multiply with ratio.
ratio_range (tuple[float]): The minimum and maximum ratio to scale
the ``scale``.
Returns:
tuple: The targeted scale of the image to be resized.
"""
assert isinstance(scale, tuple) and len(scale) == 2
min_ratio, max_ratio = ratio_range
assert min_ratio <= max_ratio
ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio
scale = int(scale[0] * ratio), int(scale[1] * ratio)
return scale
@cache_randomness
def _random_scale(self) -> tuple:
"""Private function to randomly sample an scale according to the type
of ``scale``.
Returns:
tuple: The targeted scale of the image to be resized.
"""
if mmengine.is_tuple_of(self.scale, int):
assert self.ratio_range is not None and len(self.ratio_range) == 2
scale = self._random_sample_ratio(
self.scale, # type: ignore
self.ratio_range)
elif mmengine.is_seq_of(self.scale, tuple):
scale = self._random_sample(self.scale) # type: ignore
else:
raise NotImplementedError('Do not support sampling function '
f'for "{self.scale}"')
return scale
def transform(self, results: dict) -> dict:
"""Transform function to resize images, bounding boxes, semantic
segmentation map.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results, ``img``, ``gt_bboxes``, ``gt_semantic_seg``,
``gt_keypoints``, ``scale``, ``scale_factor``, ``img_shape``, and
``keep_ratio`` keys are updated in result dict.
"""
results['scale'] = self._random_scale()
self.resize.scale = results['scale']
results = self.resize(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(scale={self.scale}, '
repr_str += f'ratio_range={self.ratio_range}, '
repr_str += f'resize_cfg={self.resize_cfg})'
return repr_str
|