Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,721 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import functools
import inspect
import weakref
from collections import defaultdict
from collections.abc import Iterable
from contextlib import contextmanager
from typing import Callable, Union
from .base import BaseTransform
class cache_randomness:
"""Decorator that marks the method with random return value(s) in a
transform class.
This decorator is usually used together with the context-manager
:func`:cache_random_params`. In this context, a decorated method will
cache its return value(s) at the first time of being invoked, and always
return the cached values when being invoked again.
.. note::
Only an instance method can be decorated with ``cache_randomness``.
"""
def __init__(self, func):
# Check `func` is to be bound as an instance method
if not inspect.isfunction(func):
raise TypeError('Unsupport callable to decorate with'
'@cache_randomness.')
func_args = inspect.getfullargspec(func).args
if len(func_args) == 0 or func_args[0] != 'self':
raise TypeError(
'@cache_randomness should only be used to decorate '
'instance methods (the first argument is ``self``).')
functools.update_wrapper(self, func)
self.func = func
self.instance_ref = None
def __set_name__(self, owner, name):
# Maintain a record of decorated methods in the class
if not hasattr(owner, '_methods_with_randomness'):
setattr(owner, '_methods_with_randomness', [])
# Here `name` equals to `self.__name__`, i.e., the name of the
# decorated function, due to the invocation of `update_wrapper` in
# `self.__init__()`
owner._methods_with_randomness.append(name)
def __call__(self, *args, **kwargs):
# Get the transform instance whose method is decorated
# by cache_randomness
instance = self.instance_ref()
name = self.__name__
# Check the flag ``self._cache_enabled``, which should be
# set by the contextmanagers like ``cache_random_parameters```
cache_enabled = getattr(instance, '_cache_enabled', False)
if cache_enabled:
# Initialize the cache of the transform instances. The flag
# ``cache_enabled``` is set by contextmanagers like
# ``cache_random_params```.
if not hasattr(instance, '_cache'):
setattr(instance, '_cache', {})
if name not in instance._cache:
instance._cache[name] = self.func(instance, *args, **kwargs)
# Return the cached value
return instance._cache[name]
else:
# Clear cache
if hasattr(instance, '_cache'):
del instance._cache
# Return function output
return self.func(instance, *args, **kwargs)
def __get__(self, obj, cls):
self.instance_ref = weakref.ref(obj)
# Return a copy to avoid multiple transform instances sharing
# one `cache_randomness` instance, which may cause data races
# in multithreading cases.
return copy.copy(self)
def avoid_cache_randomness(cls):
"""Decorator that marks a data transform class (subclass of
:class:`BaseTransform`) prohibited from caching randomness. With this
decorator, errors will be raised in following cases:
1. A method is defined in the class with the decorate
`cache_randomness`;
2. An instance of the class is invoked with the context
`cache_random_params`.
A typical usage of `avoid_cache_randomness` is to decorate the data
transforms with non-cacheable random behaviors (e.g., the random behavior
can not be defined in a method, thus can not be decorated with
`cache_randomness`). This is for preventing unintentinoal use of such data
transforms within the context of caching randomness, which may lead to
unexpected results.
"""
# Check that cls is a data transform class
assert issubclass(cls, BaseTransform)
# Check that no method is decorated with `cache_randomness` in cls
if getattr(cls, '_methods_with_randomness', None):
raise RuntimeError(
f'Class {cls.__name__} decorated with '
'``avoid_cache_randomness`` should not have methods decorated '
'with ``cache_randomness`` (invalid methods: '
f'{cls._methods_with_randomness})')
class AvoidCacheRandomness:
def __get__(self, obj, objtype=None):
# Here we check the value in `objtype.__dict__` instead of
# directly checking the attribute
# `objtype._avoid_cache_randomness`. So if the base class is
# decorated with :func:`avoid_cache_randomness`, it will not be
# inherited by subclasses.
return objtype.__dict__.get('_avoid_cache_randomness', False)
cls.avoid_cache_randomness = AvoidCacheRandomness()
cls._avoid_cache_randomness = True
return cls
@contextmanager
def cache_random_params(transforms: Union[BaseTransform, Iterable]):
"""Context-manager that enables the cache of return values of methods
decorated with ``cache_randomness`` in transforms.
In this mode, decorated methods will cache their return values on the
first invoking, and always return the cached value afterward. This allow
to apply random transforms in a deterministic way. For example, apply same
transforms on multiple examples. See ``cache_randomness`` for more
information.
Args:
transforms (BaseTransform|list[BaseTransform]): The transforms to
enable cache.
"""
# key2method stores the original methods that are replaced by the wrapped
# ones. These methods will be restituted when exiting the context.
key2method = dict()
# key2counter stores the usage number of each cache_randomness. This is
# used to check that any cache_randomness is invoked once during processing
# on data sample.
key2counter: dict = defaultdict(int)
def _add_invoke_counter(obj, method_name):
method = getattr(obj, method_name)
key = f'{id(obj)}.{method_name}'
key2method[key] = method
@functools.wraps(method)
def wrapped(*args, **kwargs):
key2counter[key] += 1
return method(*args, **kwargs)
return wrapped
def _add_invoke_checker(obj, method_name):
# check that the method in _methods_with_randomness has been
# invoked at most once
method = getattr(obj, method_name)
key = f'{id(obj)}.{method_name}'
key2method[key] = method
@functools.wraps(method)
def wrapped(*args, **kwargs):
# clear counter
for name in obj._methods_with_randomness:
key = f'{id(obj)}.{name}'
key2counter[key] = 0
output = method(*args, **kwargs)
for name in obj._methods_with_randomness:
key = f'{id(obj)}.{name}'
if key2counter[key] > 1:
raise RuntimeError(
'The method decorated with ``cache_randomness`` '
'should be invoked at most once during processing '
f'one data sample. The method {name} of {obj} has '
f'been invoked {key2counter[key]} times.')
return output
return wrapped
def _start_cache(t: BaseTransform):
# Check if cache is allowed for `t`
if getattr(t, 'avoid_cache_randomness', False):
raise RuntimeError(
f'Class {t.__class__.__name__} decorated with '
'``avoid_cache_randomness`` is not allowed to be used with'
' ``cache_random_params`` (e.g. wrapped by '
'``ApplyToMultiple`` with ``share_random_params==True``).')
# Skip transforms w/o random method
if not hasattr(t, '_methods_with_randomness'):
return
# Set cache enabled flag
setattr(t, '_cache_enabled', True)
# Store the original method and init the counter
if hasattr(t, '_methods_with_randomness'):
setattr(t, 'transform', _add_invoke_checker(t, 'transform'))
for name in getattr(t, '_methods_with_randomness'):
setattr(t, name, _add_invoke_counter(t, name))
def _end_cache(t: BaseTransform):
# Skip transforms w/o random method
if not hasattr(t, '_methods_with_randomness'):
return
# Remove cache enabled flag
delattr(t, '_cache_enabled')
if hasattr(t, '_cache'):
delattr(t, '_cache')
# Restore the original method
if hasattr(t, '_methods_with_randomness'):
for name in getattr(t, '_methods_with_randomness'):
key = f'{id(t)}.{name}'
setattr(t, name, key2method[key])
key_transform = f'{id(t)}.transform'
setattr(t, 'transform', key2method[key_transform])
def _apply(t: Union[BaseTransform, Iterable],
func: Callable[[BaseTransform], None]):
if isinstance(t, BaseTransform):
func(t)
if isinstance(t, Iterable):
for _t in t:
_apply(_t, func)
try:
_apply(transforms, _start_cache)
yield
finally:
_apply(transforms, _end_cache)
|