File size: 24,860 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.


from typing import Any, Callable, Dict, List, Optional, Sequence, Union

import mmengine
import numpy as np

from .base import BaseTransform
from .builder import TRANSFORMS
from .utils import cache_random_params, cache_randomness

# Define type of transform or transform config
Transform = Union[Dict, Callable[[Dict], Dict]]

# Indicator of keys marked by KeyMapper._map_input, which means ignoring the
# marked keys in KeyMapper._apply_transform so they will be invisible to
# wrapped transforms.
# This can be 2 possible case:
# 1. The key is required but missing in results
# 2. The key is manually set as ... (Ellipsis) in ``mapping``, which means
# the original value in results should be ignored
IgnoreKey = object()

# Import nullcontext if python>=3.7, otherwise use a simple alternative
# implementation.
try:
    from contextlib import nullcontext  # type: ignore
except ImportError:
    from contextlib import contextmanager

    @contextmanager  # type: ignore
    def nullcontext(resource=None):
        try:
            yield resource
        finally:
            pass


@TRANSFORMS.register_module()
class Compose(BaseTransform):
    """Compose multiple transforms sequentially.

    Args:
        transforms (list[dict | callable]): Sequence of transform object or
            config dict to be composed.

    Examples:
        >>> pipeline = [
        >>>     dict(type='Compose',
        >>>         transforms=[
        >>>             dict(type='LoadImageFromFile'),
        >>>             dict(type='Normalize')
        >>>         ]
        >>>     )
        >>> ]
    """

    def __init__(self, transforms: Union[Transform, Sequence[Transform]]):
        super().__init__()

        if not isinstance(transforms, Sequence):
            transforms = [transforms]
        self.transforms: List = []
        for transform in transforms:
            if isinstance(transform, dict):
                transform = TRANSFORMS.build(transform)
                self.transforms.append(transform)
            elif callable(transform):
                self.transforms.append(transform)
            else:
                raise TypeError('transform must be callable or a dict, but got'
                                f' {type(transform)}')

    def __iter__(self):
        """Allow easy iteration over the transform sequence."""
        return iter(self.transforms)

    def transform(self, results: Dict) -> Optional[Dict]:
        """Call function to apply transforms sequentially.

        Args:
            results (dict): A result dict contains the results to transform.

        Returns:
            dict or None: Transformed results.
        """
        for t in self.transforms:
            results = t(results)  # type: ignore
            if results is None:
                return None
        return results

    def __repr__(self):
        """Compute the string representation."""
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += f'\n    {t}'
        format_string += '\n)'
        return format_string


@TRANSFORMS.register_module()
class KeyMapper(BaseTransform):
    """A transform wrapper to map and reorganize the input/output of the
    wrapped transforms (or sub-pipeline).

    Args:
        transforms (list[dict | callable], optional): Sequence of transform
            object or config dict to be wrapped.
        mapping (dict): A dict that defines the input key mapping.
            The keys corresponds to the inner key (i.e., kwargs of the
            ``transform`` method), and should be string type. The values
            corresponds to the outer keys (i.e., the keys of the
            data/results), and should have a type of string, list or dict.
            None means not applying input mapping. Default: None.
        remapping (dict): A dict that defines the output key mapping.
            The keys and values have the same meanings and rules as in the
            ``mapping``. Default: None.
        auto_remap (bool, optional): If True, an inverse of the mapping will
            be used as the remapping. If auto_remap is not given, it will be
            automatically set True if 'remapping' is not given, and vice
            versa. Default: None.
        allow_nonexist_keys (bool): If False, the outer keys in the mapping
            must exist in the input data, or an exception will be raised.
            Default: False.

    Examples:
        >>> # Example 1: KeyMapper 'gt_img' to 'img'
        >>> pipeline = [
        >>>     # Use KeyMapper to convert outer (original) field name
        >>>     # 'gt_img' to inner (used by inner transforms) filed name
        >>>     # 'img'
        >>>     dict(type='KeyMapper',
        >>>         mapping={'img': 'gt_img'},
        >>>         # auto_remap=True means output key mapping is the revert of
        >>>         # the input key mapping, e.g. inner 'img' will be mapped
        >>>         # back to outer 'gt_img'
        >>>         auto_remap=True,
        >>>         transforms=[
        >>>             # In all transforms' implementation just use 'img'
        >>>             # as a standard field name
        >>>             dict(type='Crop', crop_size=(384, 384)),
        >>>             dict(type='Normalize'),
        >>>         ])
        >>> ]

        >>> # Example 2: Collect and structure multiple items
        >>> pipeline = [
        >>>     # The inner field 'imgs' will be a dict with keys 'img_src'
        >>>     # and 'img_tar', whose values are outer fields 'img1' and
        >>>     # 'img2' respectively.
        >>>     dict(type='KeyMapper',
        >>>         dict(
        >>>             type='KeyMapper',
        >>>             mapping=dict(
        >>>                 imgs=dict(
        >>>                     img_src='img1',
        >>>                     img_tar='img2')),
        >>>         transforms=...)
        >>> ]

        >>> # Example 3: Manually set ignored keys by "..."
        >>> pipeline = [
        >>>     ...
        >>>     dict(type='KeyMapper',
        >>>         mapping={
        >>>             # map outer key "gt_img" to inner key "img"
        >>>             'img': 'gt_img',
        >>>             # ignore outer key "mask"
        >>>             'mask': ...,
        >>>         },
        >>>         transforms=[
        >>>             dict(type='RandomFlip'),
        >>>         ])
        >>>     ...
        >>> ]
    """

    def __init__(self,
                 transforms: Union[Transform, List[Transform]] = None,
                 mapping: Optional[Dict] = None,
                 remapping: Optional[Dict] = None,
                 auto_remap: Optional[bool] = None,
                 allow_nonexist_keys: bool = False):

        super().__init__()

        self.allow_nonexist_keys = allow_nonexist_keys
        self.mapping = mapping

        if auto_remap is None:
            auto_remap = remapping is None
        self.auto_remap = auto_remap

        if self.auto_remap:
            if remapping is not None:
                raise ValueError('KeyMapper: ``remapping`` must be None if'
                                 '`auto_remap` is set True.')
            self.remapping = mapping
        else:
            self.remapping = remapping

        if transforms is None:
            transforms = []
        self.transforms = Compose(transforms)

    def __iter__(self):
        """Allow easy iteration over the transform sequence."""
        return iter(self.transforms)

    def _map_input(self, data: Dict,
                   mapping: Optional[Dict]) -> Dict[str, Any]:
        """KeyMapper inputs for the wrapped transforms by gathering and
        renaming data items according to the mapping.

        Args:
            data (dict): The original input data
            mapping (dict, optional): The input key mapping. See the document
                of ``mmcv.transforms.wrappers.KeyMapper`` for details. In
                set None, return the input data directly.

        Returns:
            dict: The input data with remapped keys. This will be the actual
                input of the wrapped pipeline.
        """

        if mapping is None:
            return data.copy()

        def _map(data, m):
            if isinstance(m, dict):
                # m is a dict {inner_key:outer_key, ...}
                return {k_in: _map(data, k_out) for k_in, k_out in m.items()}
            if isinstance(m, (tuple, list)):
                # m is a list or tuple [outer_key1, outer_key2, ...]
                # This is the case when we collect items from the original
                # data to form a list or tuple to feed to the wrapped
                # transforms.
                return m.__class__(_map(data, e) for e in m)

            # allow manually mark a key to be ignored by ...
            if m is ...:
                return IgnoreKey

            # m is an outer_key
            if self.allow_nonexist_keys:
                return data.get(m, IgnoreKey)
            else:
                return data.get(m)

        collected = _map(data, mapping)

        # Retain unmapped items
        inputs = data.copy()
        inputs.update(collected)

        return inputs

    def _map_output(self, data: Dict,
                    remapping: Optional[Dict]) -> Dict[str, Any]:
        """KeyMapper outputs from the wrapped transforms by gathering and
        renaming data items according to the remapping.

        Args:
            data (dict): The output of the wrapped pipeline.
            remapping (dict, optional): The output key mapping. See the
                document of ``mmcv.transforms.wrappers.KeyMapper`` for
                details. If ``remapping is None``, no key mapping will be
                applied but only remove the special token ``IgnoreKey``.

        Returns:
            dict: The output with remapped keys.
        """

        # Remove ``IgnoreKey``
        if remapping is None:
            return {k: v for k, v in data.items() if v is not IgnoreKey}

        def _map(data, m):
            if isinstance(m, dict):
                assert isinstance(data, dict)
                results = {}
                for k_in, k_out in m.items():
                    assert k_in in data
                    results.update(_map(data[k_in], k_out))
                return results
            if isinstance(m, (list, tuple)):
                assert isinstance(data, (list, tuple))
                assert len(data) == len(m)
                results = {}
                for m_i, d_i in zip(m, data):
                    results.update(_map(d_i, m_i))
                return results

            # ``m is ...`` means the key is marked ignored, in which case the
            # inner resuls will not affect the outer results in remapping.
            # Another case that will have ``data is IgnoreKey`` is that the
            # key is missing in the inputs. In this case, if the inner key is
            # created by the wrapped transforms, it will be remapped to the
            # corresponding outer key during remapping.
            if m is ... or data is IgnoreKey:
                return {}

            return {m: data}

        # Note that unmapped items are not retained, which is different from
        # the behavior in _map_input. This is to avoid original data items
        # being overwritten by intermediate namesakes
        return _map(data, remapping)

    def _apply_transforms(self, inputs: Dict) -> Dict:
        """Apply ``self.transforms``.

        Note that the special token ``IgnoreKey`` will be invisible to
        ``self.transforms``, but not removed in this method. It will be
        eventually removed in :func:``self._map_output``.
        """
        results = inputs.copy()
        inputs = {k: v for k, v in inputs.items() if v is not IgnoreKey}
        outputs = self.transforms(inputs)

        if outputs is None:
            raise ValueError(
                f'Transforms wrapped by {self.__class__.__name__} should '
                'not return None.')

        results.update(outputs)  # type: ignore
        return results

    def transform(self, results: Dict) -> Dict:
        """Apply mapping, wrapped transforms and remapping."""

        # Apply mapping
        inputs = self._map_input(results, self.mapping)
        # Apply wrapped transforms
        outputs = self._apply_transforms(inputs)
        # Apply remapping
        outputs = self._map_output(outputs, self.remapping)

        results.update(outputs)  # type: ignore
        return results

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f'(transforms = {self.transforms}'
        repr_str += f', mapping = {self.mapping}'
        repr_str += f', remapping = {self.remapping}'
        repr_str += f', auto_remap = {self.auto_remap}'
        repr_str += f', allow_nonexist_keys = {self.allow_nonexist_keys})'
        return repr_str


@TRANSFORMS.register_module()
class TransformBroadcaster(KeyMapper):
    """A transform wrapper to apply the wrapped transforms to multiple data
    items. For example, apply Resize to multiple images.

    Args:
        transforms (list[dict | callable]): Sequence of transform object or
            config dict to be wrapped.
        mapping (dict): A dict that defines the input key mapping.
            Note that to apply the transforms to multiple data items, the
            outer keys of the target items should be remapped as a list with
            the standard inner key (The key required by the wrapped transform).
            See the following example and the document of
            ``mmcv.transforms.wrappers.KeyMapper`` for details.
        remapping (dict): A dict that defines the output key mapping.
            The keys and values have the same meanings and rules as in the
            ``mapping``. Default: None.
        auto_remap (bool, optional): If True, an inverse of the mapping will
            be used as the remapping. If auto_remap is not given, it will be
            automatically set True if 'remapping' is not given, and vice
            versa. Default: None.
        allow_nonexist_keys (bool): If False, the outer keys in the mapping
            must exist in the input data, or an exception will be raised.
            Default: False.
        share_random_params (bool): If True, the random transform
            (e.g., RandomFlip) will be conducted in a deterministic way and
            have the same behavior on all data items. For example, to randomly
            flip either both input image and ground-truth image, or none.
            Default: False.

    .. note::
        To apply the transforms to each elements of a list or tuple, instead
        of separating data items, you can map the outer key of the target
        sequence to the standard inner key. See example 2.
        example.

    Examples:
        >>> # Example 1: Broadcast to enumerated keys, each contains a single
        >>> # data element
        >>> pipeline = [
        >>>     dict(type='LoadImageFromFile', key='lq'),  # low-quality img
        >>>     dict(type='LoadImageFromFile', key='gt'),  # ground-truth img
        >>>     # TransformBroadcaster maps multiple outer fields to standard
        >>>     # the inner field and process them with wrapped transforms
        >>>     # respectively
        >>>     dict(type='TransformBroadcaster',
        >>>         # case 1: from multiple outer fields
        >>>         mapping={'img': ['lq', 'gt']},
        >>>         auto_remap=True,
        >>>         # share_random_param=True means using identical random
        >>>         # parameters in every processing
        >>>         share_random_param=True,
        >>>         transforms=[
        >>>             dict(type='Crop', crop_size=(384, 384)),
        >>>             dict(type='Normalize'),
        >>>         ])
        >>> ]

        >>> # Example 2: Broadcast to keys that contains data sequences
        >>> pipeline = [
        >>>     dict(type='LoadImageFromFile', key='lq'),  # low-quality img
        >>>     dict(type='LoadImageFromFile', key='gt'),  # ground-truth img
        >>>     # TransformBroadcaster maps multiple outer fields to standard
        >>>     # the inner field and process them with wrapped transforms
        >>>     # respectively
        >>>     dict(type='TransformBroadcaster',
        >>>         # case 2: from one outer field that contains multiple
        >>>         # data elements (e.g. a list)
        >>>         # mapping={'img': 'images'},
        >>>         auto_remap=True,
        >>>         share_random_param=True,
        >>>         transforms=[
        >>>             dict(type='Crop', crop_size=(384, 384)),
        >>>             dict(type='Normalize'),
        >>>         ])
        >>> ]

        >>> Example 3: Set ignored keys in broadcasting
        >>> pipeline = [
        >>>        dict(type='TransformBroadcaster',
        >>>            # Broadcast the wrapped transforms to multiple images
        >>>            # 'lq' and 'gt, but only update 'img_shape' once
        >>>            mapping={
        >>>                'img': ['lq', 'gt'],
        >>>                'img_shape': ['img_shape', ...],
        >>>             },
        >>>            auto_remap=True,
        >>>            share_random_params=True,
        >>>            transforms=[
        >>>                # `RandomCrop` will modify the field "img",
        >>>                # and optionally update "img_shape" if it exists
        >>>                dict(type='RandomCrop'),
        >>>            ])
        >>>    ]
    """

    def __init__(self,
                 transforms: List[Union[Dict, Callable[[Dict], Dict]]],
                 mapping: Optional[Dict] = None,
                 remapping: Optional[Dict] = None,
                 auto_remap: Optional[bool] = None,
                 allow_nonexist_keys: bool = False,
                 share_random_params: bool = False):
        super().__init__(transforms, mapping, remapping, auto_remap,
                         allow_nonexist_keys)

        self.share_random_params = share_random_params

    def scatter_sequence(self, data: Dict) -> List[Dict]:
        """Scatter the broadcasting targets to a list of inputs of the wrapped
        transforms."""

        # infer split number from input
        seq_len = 0
        key_rep = None

        if self.mapping:
            keys = self.mapping.keys()
        else:
            keys = data.keys()

        for key in keys:
            assert isinstance(data[key], Sequence)
            if seq_len:
                if len(data[key]) != seq_len:
                    raise ValueError('Got inconsistent sequence length: '
                                     f'{seq_len} ({key_rep}) vs. '
                                     f'{len(data[key])} ({key})')
            else:
                seq_len = len(data[key])
                key_rep = key

        assert seq_len > 0, 'Fail to get the number of broadcasting targets'

        scatters = []
        for i in range(seq_len):  # type: ignore
            scatter = data.copy()
            for key in keys:
                scatter[key] = data[key][i]
            scatters.append(scatter)
        return scatters

    def transform(self, results: Dict):
        """Broadcast wrapped transforms to multiple targets."""

        # Apply input remapping
        inputs = self._map_input(results, self.mapping)

        # Scatter sequential inputs into a list
        input_scatters = self.scatter_sequence(inputs)

        # Control random parameter sharing with a context manager
        if self.share_random_params:
            # The context manager :func`:cache_random_params` will let
            # cacheable method of the transforms cache their outputs. Thus
            # the random parameters will only generated once and shared
            # by all data items.
            ctx = cache_random_params  # type: ignore
        else:
            ctx = nullcontext  # type: ignore

        with ctx(self.transforms):
            output_scatters = [
                self._apply_transforms(_input) for _input in input_scatters
            ]

        # Collate output scatters (list of dict to dict of list)
        outputs = {
            key: [_output[key] for _output in output_scatters]
            for key in output_scatters[0]
        }

        # Apply remapping
        outputs = self._map_output(outputs, self.remapping)

        results.update(outputs)
        return results

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f'(transforms = {self.transforms}'
        repr_str += f', mapping = {self.mapping}'
        repr_str += f', remapping = {self.remapping}'
        repr_str += f', auto_remap = {self.auto_remap}'
        repr_str += f', allow_nonexist_keys = {self.allow_nonexist_keys}'
        repr_str += f', share_random_params = {self.share_random_params})'
        return repr_str


@TRANSFORMS.register_module()
class RandomChoice(BaseTransform):
    """Process data with a randomly chosen transform from given candidates.

    Args:
        transforms (list[list]): A list of transform candidates, each is a
            sequence of transforms.
        prob (list[float], optional): The probabilities associated
            with each pipeline. The length should be equal to the pipeline
            number and the sum should be 1. If not given, a uniform
            distribution will be assumed.

    Examples:
        >>> # config
        >>> pipeline = [
        >>>     dict(type='RandomChoice',
        >>>         transforms=[
        >>>             [dict(type='RandomHorizontalFlip')],  # subpipeline 1
        >>>             [dict(type='RandomRotate')],  # subpipeline 2
        >>>         ]
        >>>     )
        >>> ]
    """

    def __init__(self,
                 transforms: List[Union[Transform, List[Transform]]],
                 prob: Optional[List[float]] = None):

        super().__init__()

        if prob is not None:
            assert mmengine.is_seq_of(prob, float)
            assert len(transforms) == len(prob), \
                '``transforms`` and ``prob`` must have same lengths. ' \
                f'Got {len(transforms)} vs {len(prob)}.'
            assert sum(prob) == 1

        self.prob = prob
        self.transforms = [Compose(transforms) for transforms in transforms]

    def __iter__(self):
        return iter(self.transforms)

    @cache_randomness
    def random_pipeline_index(self) -> int:
        """Return a random transform index."""
        indices = np.arange(len(self.transforms))
        return np.random.choice(indices, p=self.prob)

    def transform(self, results: Dict) -> Optional[Dict]:
        """Randomly choose a transform to apply."""
        idx = self.random_pipeline_index()
        return self.transforms[idx](results)

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f'(transforms = {self.transforms}'
        repr_str += f'prob = {self.prob})'
        return repr_str


@TRANSFORMS.register_module()
class RandomApply(BaseTransform):
    """Apply transforms randomly with a given probability.

    Args:
        transforms (list[dict | callable]): The transform or transform list
            to randomly apply.
        prob (float): The probability to apply transforms. Default: 0.5

    Examples:
        >>> # config
        >>> pipeline = [
        >>>     dict(type='RandomApply',
        >>>         transforms=[dict(type='HorizontalFlip')],
        >>>         prob=0.3)
        >>> ]
    """

    def __init__(self,
                 transforms: Union[Transform, List[Transform]],
                 prob: float = 0.5):

        super().__init__()
        self.prob = prob
        self.transforms = Compose(transforms)

    def __iter__(self):
        return iter(self.transforms)

    @cache_randomness
    def random_apply(self) -> bool:
        """Return a random bool value indicating whether apply the
        transform."""
        return np.random.rand() < self.prob

    def transform(self, results: Dict) -> Optional[Dict]:
        """Randomly apply the transform."""
        if self.random_apply():
            return self.transforms(results)  # type: ignore
        else:
            return results

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f'(transforms = {self.transforms}'
        repr_str += f', prob = {self.prob})'
        return repr_str