File size: 11,601 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import os.path as osp
from typing import Callable, Dict, List, Optional, Sequence, Union

import mmengine
import mmengine.fileio as fileio
import numpy as np
from mmengine.dataset import BaseDataset, Compose

from mmdet.registry import DATASETS


@DATASETS.register_module()
class BaseSegDataset(BaseDataset):
    """Custom dataset for semantic segmentation. An example of file structure
    is as followed.

    .. code-block:: none

        β”œβ”€β”€ data
        β”‚   β”œβ”€β”€ my_dataset
        β”‚   β”‚   β”œβ”€β”€ img_dir
        β”‚   β”‚   β”‚   β”œβ”€β”€ train
        β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ xxx{img_suffix}
        β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ yyy{img_suffix}
        β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ zzz{img_suffix}
        β”‚   β”‚   β”‚   β”œβ”€β”€ val
        β”‚   β”‚   β”œβ”€β”€ ann_dir
        β”‚   β”‚   β”‚   β”œβ”€β”€ train
        β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ xxx{seg_map_suffix}
        β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ yyy{seg_map_suffix}
        β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ zzz{seg_map_suffix}
        β”‚   β”‚   β”‚   β”œβ”€β”€ val

    The img/gt_semantic_seg pair of BaseSegDataset should be of the same
    except suffix. A valid img/gt_semantic_seg filename pair should be like
    ``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included
    in the suffix). If split is given, then ``xxx`` is specified in txt file.
    Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded.
    Please refer to ``docs/en/tutorials/new_dataset.md`` for more details.


    Args:
        ann_file (str): Annotation file path. Defaults to ''.
        metainfo (dict, optional): Meta information for dataset, such as
            specify classes to load. Defaults to None.
        data_root (str, optional): The root directory for ``data_prefix`` and
            ``ann_file``. Defaults to None.
        data_prefix (dict, optional): Prefix for training data. Defaults to
            dict(img_path=None, seg_map_path=None).
        img_suffix (str): Suffix of images. Default: '.jpg'
        seg_map_suffix (str): Suffix of segmentation maps. Default: '.png'
        filter_cfg (dict, optional): Config for filter data. Defaults to None.
        indices (int or Sequence[int], optional): Support using first few
            data in annotation file to facilitate training/testing on a smaller
            dataset. Defaults to None which means using all ``data_infos``.
        serialize_data (bool, optional): Whether to hold memory using
            serialized objects, when enabled, data loader workers can use
            shared RAM from master process instead of making a copy. Defaults
            to True.
        pipeline (list, optional): Processing pipeline. Defaults to [].
        test_mode (bool, optional): ``test_mode=True`` means in test phase.
            Defaults to False.
        lazy_init (bool, optional): Whether to load annotation during
            instantiation. In some cases, such as visualization, only the meta
            information of the dataset is needed, which is not necessary to
            load annotation file. ``Basedataset`` can skip load annotations to
            save time by set ``lazy_init=True``. Defaults to False.
        use_label_map (bool, optional): Whether to use label map.
            Defaults to False.
        max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
            None img. The maximum extra number of cycles to get a valid
            image. Defaults to 1000.
        backend_args (dict, Optional): Arguments to instantiate a file backend.
            See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
            for details. Defaults to None.
            Notes: mmcv>=2.0.0rc4 required.
    """
    METAINFO: dict = dict()

    def __init__(self,
                 ann_file: str = '',
                 img_suffix='.jpg',
                 seg_map_suffix='.png',
                 metainfo: Optional[dict] = None,
                 data_root: Optional[str] = None,
                 data_prefix: dict = dict(img_path='', seg_map_path=''),
                 filter_cfg: Optional[dict] = None,
                 indices: Optional[Union[int, Sequence[int]]] = None,
                 serialize_data: bool = True,
                 pipeline: List[Union[dict, Callable]] = [],
                 test_mode: bool = False,
                 lazy_init: bool = False,
                 use_label_map: bool = False,
                 max_refetch: int = 1000,
                 backend_args: Optional[dict] = None) -> None:

        self.img_suffix = img_suffix
        self.seg_map_suffix = seg_map_suffix
        self.backend_args = backend_args.copy() if backend_args else None

        self.data_root = data_root
        self.data_prefix = copy.copy(data_prefix)
        self.ann_file = ann_file
        self.filter_cfg = copy.deepcopy(filter_cfg)
        self._indices = indices
        self.serialize_data = serialize_data
        self.test_mode = test_mode
        self.max_refetch = max_refetch
        self.data_list: List[dict] = []
        self.data_bytes: np.ndarray

        # Set meta information.
        self._metainfo = self._load_metainfo(copy.deepcopy(metainfo))

        # Get label map for custom classes
        new_classes = self._metainfo.get('classes', None)
        self.label_map = self.get_label_map(
            new_classes) if use_label_map else None
        self._metainfo.update(dict(label_map=self.label_map))

        # Update palette based on label map or generate palette
        # if it is not defined
        updated_palette = self._update_palette()
        self._metainfo.update(dict(palette=updated_palette))

        # Join paths.
        if self.data_root is not None:
            self._join_prefix()

        # Build pipeline.
        self.pipeline = Compose(pipeline)
        # Full initialize the dataset.
        if not lazy_init:
            self.full_init()

        if test_mode:
            assert self._metainfo.get('classes') is not None, \
                'dataset metainfo `classes` should be specified when testing'

    @classmethod
    def get_label_map(cls,
                      new_classes: Optional[Sequence] = None
                      ) -> Union[Dict, None]:
        """Require label mapping.

        The ``label_map`` is a dictionary, its keys are the old label ids and
        its values are the new label ids, and is used for changing pixel
        labels in load_annotations. If and only if old classes in cls.METAINFO
        is not equal to new classes in self._metainfo and nether of them is not
        None, `label_map` is not None.

        Args:
            new_classes (list, tuple, optional): The new classes name from
                metainfo. Default to None.


        Returns:
            dict, optional: The mapping from old classes in cls.METAINFO to
                new classes in self._metainfo
        """
        old_classes = cls.METAINFO.get('classes', None)
        if (new_classes is not None and old_classes is not None
                and list(new_classes) != list(old_classes)):

            label_map = {}
            if not set(new_classes).issubset(cls.METAINFO['classes']):
                raise ValueError(
                    f'new classes {new_classes} is not a '
                    f'subset of classes {old_classes} in METAINFO.')
            for i, c in enumerate(old_classes):
                if c not in new_classes:
                    # 0 is background
                    label_map[i] = 0
                else:
                    label_map[i] = new_classes.index(c)
            return label_map
        else:
            return None

    def _update_palette(self) -> list:
        """Update palette after loading metainfo.

        If length of palette is equal to classes, just return the palette.
        If palette is not defined, it will randomly generate a palette.
        If classes is updated by customer, it will return the subset of
        palette.

        Returns:
            Sequence: Palette for current dataset.
        """
        palette = self._metainfo.get('palette', [])
        classes = self._metainfo.get('classes', [])
        # palette does match classes
        if len(palette) == len(classes):
            return palette

        if len(palette) == 0:
            # Get random state before set seed, and restore
            # random state later.
            # It will prevent loss of randomness, as the palette
            # may be different in each iteration if not specified.
            # See: https://github.com/open-mmlab/mmdetection/issues/5844
            state = np.random.get_state()
            np.random.seed(42)
            # random palette
            new_palette = np.random.randint(
                0, 255, size=(len(classes), 3)).tolist()
            np.random.set_state(state)
        elif len(palette) >= len(classes) and self.label_map is not None:
            new_palette = []
            # return subset of palette
            for old_id, new_id in sorted(
                    self.label_map.items(), key=lambda x: x[1]):
                # 0 is background
                if new_id != 0:
                    new_palette.append(palette[old_id])
            new_palette = type(palette)(new_palette)
        elif len(palette) >= len(classes):
            # Allow palette length is greater than classes.
            return palette
        else:
            raise ValueError('palette does not match classes '
                             f'as metainfo is {self._metainfo}.')
        return new_palette

    def load_data_list(self) -> List[dict]:
        """Load annotation from directory or annotation file.

        Returns:
            list[dict]: All data info of dataset.
        """
        data_list = []
        img_dir = self.data_prefix.get('img_path', None)
        ann_dir = self.data_prefix.get('seg_map_path', None)
        if not osp.isdir(self.ann_file) and self.ann_file:
            assert osp.isfile(self.ann_file), \
                f'Failed to load `ann_file` {self.ann_file}'
            lines = mmengine.list_from_file(
                self.ann_file, backend_args=self.backend_args)
            for line in lines:
                img_name = line.strip()
                data_info = dict(
                    img_path=osp.join(img_dir, img_name + self.img_suffix))
                if ann_dir is not None:
                    seg_map = img_name + self.seg_map_suffix
                    data_info['seg_map_path'] = osp.join(ann_dir, seg_map)
                data_info['label_map'] = self.label_map
                data_list.append(data_info)
        else:
            for img in fileio.list_dir_or_file(
                    dir_path=img_dir,
                    list_dir=False,
                    suffix=self.img_suffix,
                    recursive=True,
                    backend_args=self.backend_args):
                data_info = dict(img_path=osp.join(img_dir, img))
                if ann_dir is not None:
                    seg_map = img.replace(self.img_suffix, self.seg_map_suffix)
                    data_info['seg_map_path'] = osp.join(ann_dir, seg_map)
                data_info['label_map'] = self.label_map
                data_list.append(data_info)
            data_list = sorted(data_list, key=lambda x: x['img_path'])
        return data_list