Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,862 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os.path as osp
from collections import defaultdict
from typing import Any, List, Tuple
import mmengine.fileio as fileio
from mmengine.dataset import BaseDataset
from mmengine.logging import print_log
from mmdet.datasets.api_wrappers import COCO
from mmdet.registry import DATASETS
@DATASETS.register_module()
class BaseVideoDataset(BaseDataset):
"""Base video dataset for VID, MOT and VIS tasks."""
META = dict(classes=None)
# ann_id is unique in coco dataset.
ANN_ID_UNIQUE = True
def __init__(self, *args, backend_args: dict = None, **kwargs):
self.backend_args = backend_args
super().__init__(*args, **kwargs)
def load_data_list(self) -> Tuple[List[dict], List]:
"""Load annotations from an annotation file named as ``self.ann_file``.
Returns:
tuple(list[dict], list): A list of annotation and a list of
valid data indices.
"""
with fileio.get_local_path(self.ann_file) as local_path:
self.coco = COCO(local_path)
# The order of returned `cat_ids` will not
# change with the order of the classes
self.cat_ids = self.coco.get_cat_ids(
cat_names=self.metainfo['classes'])
self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
self.cat_img_map = copy.deepcopy(self.coco.cat_img_map)
# used in `filter_data`
self.img_ids_with_ann = set()
img_ids = self.coco.get_img_ids()
total_ann_ids = []
# if ``video_id`` is not in the annotation file, we will assign a big
# unique video_id for this video.
single_video_id = 100000
videos = {}
for img_id in img_ids:
raw_img_info = self.coco.load_imgs([img_id])[0]
raw_img_info['img_id'] = img_id
if 'video_id' not in raw_img_info:
single_video_id = single_video_id + 1
video_id = single_video_id
else:
video_id = raw_img_info['video_id']
if video_id not in videos:
videos[video_id] = {
'video_id': video_id,
'images': [],
'video_length': 0
}
videos[video_id]['video_length'] += 1
ann_ids = self.coco.get_ann_ids(
img_ids=[img_id], cat_ids=self.cat_ids)
raw_ann_info = self.coco.load_anns(ann_ids)
total_ann_ids.extend(ann_ids)
parsed_data_info = self.parse_data_info(
dict(raw_img_info=raw_img_info, raw_ann_info=raw_ann_info))
if len(parsed_data_info['instances']) > 0:
self.img_ids_with_ann.add(parsed_data_info['img_id'])
videos[video_id]['images'].append(parsed_data_info)
data_list = [v for v in videos.values()]
if self.ANN_ID_UNIQUE:
assert len(set(total_ann_ids)) == len(
total_ann_ids
), f"Annotation ids in '{self.ann_file}' are not unique!"
del self.coco
return data_list
def parse_data_info(self, raw_data_info: dict) -> dict:
"""Parse raw annotation to target format.
Args:
raw_data_info (dict): Raw data information loaded from
``ann_file``.
Returns:
dict: Parsed annotation.
"""
img_info = raw_data_info['raw_img_info']
ann_info = raw_data_info['raw_ann_info']
data_info = {}
data_info.update(img_info)
if self.data_prefix.get('img_path', None) is not None:
img_path = osp.join(self.data_prefix['img_path'],
img_info['file_name'])
else:
img_path = img_info['file_name']
data_info['img_path'] = img_path
instances = []
for i, ann in enumerate(ann_info):
instance = {}
if ann.get('ignore', False):
continue
x1, y1, w, h = ann['bbox']
inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0))
inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0))
if inter_w * inter_h == 0:
continue
if ann['area'] <= 0 or w < 1 or h < 1:
continue
if ann['category_id'] not in self.cat_ids:
continue
bbox = [x1, y1, x1 + w, y1 + h]
if ann.get('iscrowd', False):
instance['ignore_flag'] = 1
else:
instance['ignore_flag'] = 0
instance['bbox'] = bbox
instance['bbox_label'] = self.cat2label[ann['category_id']]
if ann.get('segmentation', None):
instance['mask'] = ann['segmentation']
if ann.get('instance_id', None):
instance['instance_id'] = ann['instance_id']
else:
# image dataset usually has no `instance_id`.
# Therefore, we set it to `i`.
instance['instance_id'] = i
instances.append(instance)
data_info['instances'] = instances
return data_info
def filter_data(self) -> List[int]:
"""Filter image annotations according to filter_cfg.
Returns:
list[int]: Filtered results.
"""
if self.test_mode:
return self.data_list
num_imgs_before_filter = sum(
[len(info['images']) for info in self.data_list])
num_imgs_after_filter = 0
# obtain images that contain annotations of the required categories
ids_in_cat = set()
for i, class_id in enumerate(self.cat_ids):
ids_in_cat |= set(self.cat_img_map[class_id])
# merge the image id sets of the two conditions and use the merged set
# to filter out images if self.filter_empty_gt=True
ids_in_cat &= self.img_ids_with_ann
new_data_list = []
for video_data_info in self.data_list:
imgs_data_info = video_data_info['images']
valid_imgs_data_info = []
for data_info in imgs_data_info:
img_id = data_info['img_id']
width = data_info['width']
height = data_info['height']
# TODO: simplify these conditions
if self.filter_cfg is None:
if img_id not in ids_in_cat:
video_data_info['video_length'] -= 1
continue
if min(width, height) >= 32:
valid_imgs_data_info.append(data_info)
num_imgs_after_filter += 1
else:
video_data_info['video_length'] -= 1
else:
if self.filter_cfg.get('filter_empty_gt',
True) and img_id not in ids_in_cat:
video_data_info['video_length'] -= 1
continue
if min(width, height) >= self.filter_cfg.get(
'min_size', 32):
valid_imgs_data_info.append(data_info)
num_imgs_after_filter += 1
else:
video_data_info['video_length'] -= 1
video_data_info['images'] = valid_imgs_data_info
new_data_list.append(video_data_info)
print_log(
'The number of samples before and after filtering: '
f'{num_imgs_before_filter} / {num_imgs_after_filter}', 'current')
return new_data_list
def prepare_data(self, idx) -> Any:
"""Get date processed by ``self.pipeline``. Note that ``idx`` is a
video index in default since the base element of video dataset is a
video. However, in some cases, we need to specific both the video index
and frame index. For example, in traing mode, we may want to sample the
specific frames and all the frames must be sampled once in a epoch; in
test mode, we may want to output data of a single image rather than the
whole video for saving memory.
Args:
idx (int): The index of ``data_info``.
Returns:
Any: Depends on ``self.pipeline``.
"""
if isinstance(idx, tuple):
assert len(idx) == 2, 'The length of idx must be 2: '
'(video_index, frame_index)'
video_idx, frame_idx = idx[0], idx[1]
else:
video_idx, frame_idx = idx, None
data_info = self.get_data_info(video_idx)
if self.test_mode:
# Support two test_mode: frame-level and video-level
final_data_info = defaultdict(list)
if frame_idx is None:
frames_idx_list = list(range(data_info['video_length']))
else:
frames_idx_list = [frame_idx]
for index in frames_idx_list:
frame_ann = data_info['images'][index]
frame_ann['video_id'] = data_info['video_id']
# Collate data_list (list of dict to dict of list)
for key, value in frame_ann.items():
final_data_info[key].append(value)
# copy the info in video-level into img-level
# TODO: the value of this key is the same as that of
# `video_length` in test mode
final_data_info['ori_video_length'].append(
data_info['video_length'])
final_data_info['video_length'] = [len(frames_idx_list)
] * len(frames_idx_list)
return self.pipeline(final_data_info)
else:
# Specify `key_frame_id` for the frame sampling in the pipeline
if frame_idx is not None:
data_info['key_frame_id'] = frame_idx
return self.pipeline(data_info)
def get_cat_ids(self, index) -> List[int]:
"""Following image detection, we provide this interface function. Get
category ids by video index and frame index.
Args:
index: The index of the dataset. It support two kinds of inputs:
Tuple:
video_idx (int): Index of video.
frame_idx (int): Index of frame.
Int: Index of video.
Returns:
List[int]: All categories in the image of specified video index
and frame index.
"""
if isinstance(index, tuple):
assert len(
index
) == 2, f'Expect the length of index is 2, but got {len(index)}'
video_idx, frame_idx = index
instances = self.get_data_info(
video_idx)['images'][frame_idx]['instances']
return [instance['bbox_label'] for instance in instances]
else:
cat_ids = []
for img in self.get_data_info(index)['images']:
for instance in img['instances']:
cat_ids.append(instance['bbox_label'])
return cat_ids
@property
def num_all_imgs(self):
"""Get the number of all the images in this video dataset."""
return sum(
[len(self.get_data_info(i)['images']) for i in range(len(self))])
def get_len_per_video(self, idx):
"""Get length of one video.
Args:
idx (int): Index of video.
Returns:
int (int): The length of the video.
"""
return len(self.get_data_info(idx)['images'])
|