File size: 16,334 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import re
import warnings
from typing import Tuple, Union

import torch
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
from .single_stage import SingleStageDetector


def find_noun_phrases(caption: str) -> list:
    """Find noun phrases in a caption using nltk.
    Args:
        caption (str): The caption to analyze.

    Returns:
        list: List of noun phrases found in the caption.

    Examples:
        >>> caption = 'There is two cat and a remote in the picture'
        >>> find_noun_phrases(caption) # ['cat', 'a remote', 'the picture']
    """
    try:
        import nltk
        nltk.download('punkt')
        nltk.download('averaged_perceptron_tagger')
    except ImportError:
        raise RuntimeError('nltk is not installed, please install it by: '
                           'pip install nltk.')

    caption = caption.lower()
    tokens = nltk.word_tokenize(caption)
    pos_tags = nltk.pos_tag(tokens)

    grammar = 'NP: {<DT>?<JJ.*>*<NN.*>+}'
    cp = nltk.RegexpParser(grammar)
    result = cp.parse(pos_tags)

    noun_phrases = []
    for subtree in result.subtrees():
        if subtree.label() == 'NP':
            noun_phrases.append(' '.join(t[0] for t in subtree.leaves()))

    return noun_phrases


def remove_punctuation(text: str) -> str:
    """Remove punctuation from a text.
    Args:
        text (str): The input text.

    Returns:
        str: The text with punctuation removed.
    """
    punctuation = [
        '|', ':', ';', '@', '(', ')', '[', ']', '{', '}', '^', '\'', '\"', '’',
        '`', '?', '$', '%', '#', '!', '&', '*', '+', ',', '.'
    ]
    for p in punctuation:
        text = text.replace(p, '')
    return text.strip()


def run_ner(caption: str) -> Tuple[list, list]:
    """Run NER on a caption and return the tokens and noun phrases.
    Args:
        caption (str): The input caption.

    Returns:
        Tuple[List, List]: A tuple containing the tokens and noun phrases.
            - tokens_positive (List): A list of token positions.
            - noun_phrases (List): A list of noun phrases.
    """
    noun_phrases = find_noun_phrases(caption)
    noun_phrases = [remove_punctuation(phrase) for phrase in noun_phrases]
    noun_phrases = [phrase for phrase in noun_phrases if phrase != '']
    relevant_phrases = noun_phrases
    labels = noun_phrases

    tokens_positive = []
    for entity, label in zip(relevant_phrases, labels):
        try:
            # search all occurrences and mark them as different entities
            # TODO: Not Robust
            for m in re.finditer(entity, caption.lower()):
                tokens_positive.append([[m.start(), m.end()]])
        except Exception:
            print('noun entities:', noun_phrases)
            print('entity:', entity)
            print('caption:', caption.lower())
    return tokens_positive, noun_phrases


def create_positive_map(tokenized,
                        tokens_positive: list,
                        max_num_entities: int = 256) -> Tensor:
    """construct a map such that positive_map[i,j] = True
    if box i is associated to token j

    Args:
        tokenized: The tokenized input.
        tokens_positive (list): A list of token ranges
            associated with positive boxes.
        max_num_entities (int, optional): The maximum number of entities.
            Defaults to 256.

    Returns:
        torch.Tensor: The positive map.

    Raises:
        Exception: If an error occurs during token-to-char mapping.
    """
    positive_map = torch.zeros((len(tokens_positive), max_num_entities),
                               dtype=torch.float)

    for j, tok_list in enumerate(tokens_positive):
        for (beg, end) in tok_list:
            try:
                beg_pos = tokenized.char_to_token(beg)
                end_pos = tokenized.char_to_token(end - 1)
            except Exception as e:
                print('beg:', beg, 'end:', end)
                print('token_positive:', tokens_positive)
                raise e
            if beg_pos is None:
                try:
                    beg_pos = tokenized.char_to_token(beg + 1)
                    if beg_pos is None:
                        beg_pos = tokenized.char_to_token(beg + 2)
                except Exception:
                    beg_pos = None
            if end_pos is None:
                try:
                    end_pos = tokenized.char_to_token(end - 2)
                    if end_pos is None:
                        end_pos = tokenized.char_to_token(end - 3)
                except Exception:
                    end_pos = None
            if beg_pos is None or end_pos is None:
                continue

            assert beg_pos is not None and end_pos is not None
            positive_map[j, beg_pos:end_pos + 1].fill_(1)
    return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)


def create_positive_map_label_to_token(positive_map: Tensor,
                                       plus: int = 0) -> dict:
    """Create a dictionary mapping the label to the token.
    Args:
        positive_map (Tensor): The positive map tensor.
        plus (int, optional): Value added to the label for indexing.
            Defaults to 0.

    Returns:
        dict: The dictionary mapping the label to the token.
    """
    positive_map_label_to_token = {}
    for i in range(len(positive_map)):
        positive_map_label_to_token[i + plus] = torch.nonzero(
            positive_map[i], as_tuple=True)[0].tolist()
    return positive_map_label_to_token


@MODELS.register_module()
class GLIP(SingleStageDetector):
    """Implementation of `GLIP <https://arxiv.org/abs/2112.03857>`_
    Args:
        backbone (:obj:`ConfigDict` or dict): The backbone config.
        neck (:obj:`ConfigDict` or dict): The neck config.
        bbox_head (:obj:`ConfigDict` or dict): The bbox head config.
        language_model (:obj:`ConfigDict` or dict): The language model config.
        train_cfg (:obj:`ConfigDict` or dict, optional): The training config
            of GLIP. Defaults to None.
        test_cfg (:obj:`ConfigDict` or dict, optional): The testing config
            of GLIP. Defaults to None.
        data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of
            :class:`DetDataPreprocessor` to process the input data.
            Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 backbone: ConfigType,
                 neck: ConfigType,
                 bbox_head: ConfigType,
                 language_model: ConfigType,
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 data_preprocessor: OptConfigType = None,
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(
            backbone=backbone,
            neck=neck,
            bbox_head=bbox_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            data_preprocessor=data_preprocessor,
            init_cfg=init_cfg)
        self.language_model = MODELS.build(language_model)

        self._special_tokens = '. '

    def get_tokens_and_prompts(
            self,
            original_caption: Union[str, list, tuple],
            custom_entities: bool = False) -> Tuple[dict, str, list, list]:
        """Get the tokens positive and prompts for the caption."""
        if isinstance(original_caption, (list, tuple)) or custom_entities:
            if custom_entities and isinstance(original_caption, str):
                original_caption = original_caption.strip(self._special_tokens)
                original_caption = original_caption.split(self._special_tokens)
                original_caption = list(
                    filter(lambda x: len(x) > 0, original_caption))

            caption_string = ''
            tokens_positive = []
            for idx, word in enumerate(original_caption):
                tokens_positive.append(
                    [[len(caption_string),
                      len(caption_string) + len(word)]])
                caption_string += word
                if idx != len(original_caption) - 1:
                    caption_string += self._special_tokens
            tokenized = self.language_model.tokenizer([caption_string],
                                                      return_tensors='pt')
            entities = original_caption
        else:
            original_caption = original_caption.strip(self._special_tokens)
            tokenized = self.language_model.tokenizer([original_caption],
                                                      return_tensors='pt')
            tokens_positive, noun_phrases = run_ner(original_caption)
            entities = noun_phrases
            caption_string = original_caption

        return tokenized, caption_string, tokens_positive, entities

    def get_positive_map(self, tokenized, tokens_positive):
        positive_map = create_positive_map(tokenized, tokens_positive)
        positive_map_label_to_token = create_positive_map_label_to_token(
            positive_map, plus=1)
        return positive_map_label_to_token, positive_map

    def get_tokens_positive_and_prompts(
            self,
            original_caption: Union[str, list, tuple],
            custom_entities: bool = False) -> Tuple[dict, str, Tensor, list]:
        tokenized, caption_string, tokens_positive, entities = \
            self.get_tokens_and_prompts(
                original_caption, custom_entities)
        positive_map_label_to_token, positive_map = self.get_positive_map(
            tokenized, tokens_positive)
        return positive_map_label_to_token, caption_string, \
            positive_map, entities

    def loss(self, batch_inputs: Tensor,
             batch_data_samples: SampleList) -> Union[dict, list]:
        # TODO: Only open vocabulary tasks are supported for training now.
        text_prompts = [
            data_samples.text for data_samples in batch_data_samples
        ]

        gt_labels = [
            data_samples.gt_instances.labels
            for data_samples in batch_data_samples
        ]

        new_text_prompts = []
        positive_maps = []
        if len(set(text_prompts)) == 1:
            # All the text prompts are the same,
            # so there is no need to calculate them multiple times.
            tokenized, caption_string, tokens_positive, _ = \
                self.get_tokens_and_prompts(
                    text_prompts[0], True)
            new_text_prompts = [caption_string] * len(batch_inputs)
            for gt_label in gt_labels:
                new_tokens_positive = [
                    tokens_positive[label] for label in gt_label
                ]
                _, positive_map = self.get_positive_map(
                    tokenized, new_tokens_positive)
                positive_maps.append(positive_map)
        else:
            for text_prompt, gt_label in zip(text_prompts, gt_labels):
                tokenized, caption_string, tokens_positive, _ = \
                    self.get_tokens_and_prompts(
                        text_prompt, True)
                new_tokens_positive = [
                    tokens_positive[label] for label in gt_label
                ]
                _, positive_map = self.get_positive_map(
                    tokenized, new_tokens_positive)
                positive_maps.append(positive_map)
                new_text_prompts.append(caption_string)

        language_dict_features = self.language_model(new_text_prompts)
        for i, data_samples in enumerate(batch_data_samples):
            # .bool().float() is very important
            positive_map = positive_maps[i].to(
                batch_inputs.device).bool().float()
            data_samples.gt_instances.positive_maps = positive_map

        visual_features = self.extract_feat(batch_inputs)

        losses = self.bbox_head.loss(visual_features, language_dict_features,
                                     batch_data_samples)
        return losses

    def predict(self,
                batch_inputs: Tensor,
                batch_data_samples: SampleList,
                rescale: bool = True) -> SampleList:
        """Predict results from a batch of inputs and data samples with post-
        processing.

        Args:
            batch_inputs (Tensor): Inputs with shape (N, C, H, W).
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            rescale (bool): Whether to rescale the results.
                Defaults to True.

        Returns:
            list[:obj:`DetDataSample`]: Detection results of the
            input images. Each DetDataSample usually contain
            'pred_instances'. And the ``pred_instances`` usually
            contains following keys.

                - scores (Tensor): Classification scores, has a shape
                    (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                    (num_instances, ).
                - label_names (List[str]): Label names of bboxes.
                - bboxes (Tensor): Has a shape (num_instances, 4),
                    the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        text_prompts = [
            data_samples.text for data_samples in batch_data_samples
        ]

        if 'custom_entities' in batch_data_samples[0]:
            # Assuming that the `custom_entities` flag
            # inside a batch is always the same. For single image inference
            custom_entities = batch_data_samples[0].custom_entities
        else:
            custom_entities = False

        if len(set(text_prompts)) == 1:
            # All the text prompts are the same,
            # so there is no need to calculate them multiple times.
            _positive_maps_and_prompts = [
                self.get_tokens_positive_and_prompts(text_prompts[0],
                                                     custom_entities)
            ] * len(batch_inputs)
        else:
            _positive_maps_and_prompts = [
                self.get_tokens_positive_and_prompts(text_prompt,
                                                     custom_entities)
                for text_prompt in text_prompts
            ]

        token_positive_maps, text_prompts, _, entities = zip(
            *_positive_maps_and_prompts)

        language_dict_features = self.language_model(list(text_prompts))

        for i, data_samples in enumerate(batch_data_samples):
            data_samples.token_positive_map = token_positive_maps[i]

        visual_features = self.extract_feat(batch_inputs)

        results_list = self.bbox_head.predict(
            visual_features,
            language_dict_features,
            batch_data_samples,
            rescale=rescale)

        for data_sample, pred_instances, entity in zip(batch_data_samples,
                                                       results_list, entities):
            if len(pred_instances) > 0:
                label_names = []
                for labels in pred_instances.labels:
                    if labels >= len(entity):
                        warnings.warn(
                            'The unexpected output indicates an issue with '
                            'named entity recognition. You can try '
                            'setting custom_entities=True and running '
                            'again to see if it helps.')
                        label_names.append('unobject')
                    else:
                        label_names.append(entity[labels])
                # for visualization
                pred_instances.label_names = label_names
            data_sample.pred_instances = pred_instances
        return batch_data_samples