Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,011 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
from typing import List, Optional, Tuple
import torch
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.models.utils import (filter_gt_instances, rename_loss_dict,
reweight_loss_dict)
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox2roi, bbox_project
from mmdet.utils import ConfigType, InstanceList, OptConfigType, OptMultiConfig
from ..utils.misc import unpack_gt_instances
from .semi_base import SemiBaseDetector
@MODELS.register_module()
class SoftTeacher(SemiBaseDetector):
r"""Implementation of `End-to-End Semi-Supervised Object Detection
with Soft Teacher <https://arxiv.org/abs/2106.09018>`_
Args:
detector (:obj:`ConfigDict` or dict): The detector config.
semi_train_cfg (:obj:`ConfigDict` or dict, optional):
The semi-supervised training config.
semi_test_cfg (:obj:`ConfigDict` or dict, optional):
The semi-supervised testing config.
data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of
:class:`DetDataPreprocessor` to process the input data.
Defaults to None.
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
detector: ConfigType,
semi_train_cfg: OptConfigType = None,
semi_test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
init_cfg: OptMultiConfig = None) -> None:
super().__init__(
detector=detector,
semi_train_cfg=semi_train_cfg,
semi_test_cfg=semi_test_cfg,
data_preprocessor=data_preprocessor,
init_cfg=init_cfg)
def loss_by_pseudo_instances(self,
batch_inputs: Tensor,
batch_data_samples: SampleList,
batch_info: Optional[dict] = None) -> dict:
"""Calculate losses from a batch of inputs and pseudo data samples.
Args:
batch_inputs (Tensor): Input images of shape (N, C, H, W).
These should usually be mean centered and std scaled.
batch_data_samples (List[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`,
which are `pseudo_instance` or `pseudo_panoptic_seg`
or `pseudo_sem_seg` in fact.
batch_info (dict): Batch information of teacher model
forward propagation process. Defaults to None.
Returns:
dict: A dictionary of loss components
"""
x = self.student.extract_feat(batch_inputs)
losses = {}
rpn_losses, rpn_results_list = self.rpn_loss_by_pseudo_instances(
x, batch_data_samples)
losses.update(**rpn_losses)
losses.update(**self.rcnn_cls_loss_by_pseudo_instances(
x, rpn_results_list, batch_data_samples, batch_info))
losses.update(**self.rcnn_reg_loss_by_pseudo_instances(
x, rpn_results_list, batch_data_samples))
unsup_weight = self.semi_train_cfg.get('unsup_weight', 1.)
return rename_loss_dict('unsup_',
reweight_loss_dict(losses, unsup_weight))
@torch.no_grad()
def get_pseudo_instances(
self, batch_inputs: Tensor, batch_data_samples: SampleList
) -> Tuple[SampleList, Optional[dict]]:
"""Get pseudo instances from teacher model."""
assert self.teacher.with_bbox, 'Bbox head must be implemented.'
x = self.teacher.extract_feat(batch_inputs)
# If there are no pre-defined proposals, use RPN to get proposals
if batch_data_samples[0].get('proposals', None) is None:
rpn_results_list = self.teacher.rpn_head.predict(
x, batch_data_samples, rescale=False)
else:
rpn_results_list = [
data_sample.proposals for data_sample in batch_data_samples
]
results_list = self.teacher.roi_head.predict(
x, rpn_results_list, batch_data_samples, rescale=False)
for data_samples, results in zip(batch_data_samples, results_list):
data_samples.gt_instances = results
batch_data_samples = filter_gt_instances(
batch_data_samples,
score_thr=self.semi_train_cfg.pseudo_label_initial_score_thr)
reg_uncs_list = self.compute_uncertainty_with_aug(
x, batch_data_samples)
for data_samples, reg_uncs in zip(batch_data_samples, reg_uncs_list):
data_samples.gt_instances['reg_uncs'] = reg_uncs
data_samples.gt_instances.bboxes = bbox_project(
data_samples.gt_instances.bboxes,
torch.from_numpy(data_samples.homography_matrix).inverse().to(
self.data_preprocessor.device), data_samples.ori_shape)
batch_info = {
'feat': x,
'img_shape': [],
'homography_matrix': [],
'metainfo': []
}
for data_samples in batch_data_samples:
batch_info['img_shape'].append(data_samples.img_shape)
batch_info['homography_matrix'].append(
torch.from_numpy(data_samples.homography_matrix).to(
self.data_preprocessor.device))
batch_info['metainfo'].append(data_samples.metainfo)
return batch_data_samples, batch_info
def rpn_loss_by_pseudo_instances(self, x: Tuple[Tensor],
batch_data_samples: SampleList) -> dict:
"""Calculate rpn loss from a batch of inputs and pseudo data samples.
Args:
x (tuple[Tensor]): Features from FPN.
batch_data_samples (List[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`,
which are `pseudo_instance` or `pseudo_panoptic_seg`
or `pseudo_sem_seg` in fact.
Returns:
dict: A dictionary of rpn loss components
"""
rpn_data_samples = copy.deepcopy(batch_data_samples)
rpn_data_samples = filter_gt_instances(
rpn_data_samples, score_thr=self.semi_train_cfg.rpn_pseudo_thr)
proposal_cfg = self.student.train_cfg.get('rpn_proposal',
self.student.test_cfg.rpn)
# set cat_id of gt_labels to 0 in RPN
for data_sample in rpn_data_samples:
data_sample.gt_instances.labels = \
torch.zeros_like(data_sample.gt_instances.labels)
rpn_losses, rpn_results_list = self.student.rpn_head.loss_and_predict(
x, rpn_data_samples, proposal_cfg=proposal_cfg)
for key in rpn_losses.keys():
if 'loss' in key and 'rpn' not in key:
rpn_losses[f'rpn_{key}'] = rpn_losses.pop(key)
return rpn_losses, rpn_results_list
def rcnn_cls_loss_by_pseudo_instances(self, x: Tuple[Tensor],
unsup_rpn_results_list: InstanceList,
batch_data_samples: SampleList,
batch_info: dict) -> dict:
"""Calculate classification loss from a batch of inputs and pseudo data
samples.
Args:
x (tuple[Tensor]): List of multi-level img features.
unsup_rpn_results_list (list[:obj:`InstanceData`]):
List of region proposals.
batch_data_samples (List[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`,
which are `pseudo_instance` or `pseudo_panoptic_seg`
or `pseudo_sem_seg` in fact.
batch_info (dict): Batch information of teacher model
forward propagation process.
Returns:
dict[str, Tensor]: A dictionary of rcnn
classification loss components
"""
rpn_results_list = copy.deepcopy(unsup_rpn_results_list)
cls_data_samples = copy.deepcopy(batch_data_samples)
cls_data_samples = filter_gt_instances(
cls_data_samples, score_thr=self.semi_train_cfg.cls_pseudo_thr)
outputs = unpack_gt_instances(cls_data_samples)
batch_gt_instances, batch_gt_instances_ignore, _ = outputs
# assign gts and sample proposals
num_imgs = len(cls_data_samples)
sampling_results = []
for i in range(num_imgs):
# rename rpn_results.bboxes to rpn_results.priors
rpn_results = rpn_results_list[i]
rpn_results.priors = rpn_results.pop('bboxes')
assign_result = self.student.roi_head.bbox_assigner.assign(
rpn_results, batch_gt_instances[i],
batch_gt_instances_ignore[i])
sampling_result = self.student.roi_head.bbox_sampler.sample(
assign_result,
rpn_results,
batch_gt_instances[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
selected_bboxes = [res.priors for res in sampling_results]
rois = bbox2roi(selected_bboxes)
bbox_results = self.student.roi_head._bbox_forward(x, rois)
# cls_reg_targets is a tuple of labels, label_weights,
# and bbox_targets, bbox_weights
cls_reg_targets = self.student.roi_head.bbox_head.get_targets(
sampling_results, self.student.train_cfg.rcnn)
selected_results_list = []
for bboxes, data_samples, teacher_matrix, teacher_img_shape in zip(
selected_bboxes, batch_data_samples,
batch_info['homography_matrix'], batch_info['img_shape']):
student_matrix = torch.tensor(
data_samples.homography_matrix, device=teacher_matrix.device)
homography_matrix = teacher_matrix @ student_matrix.inverse()
projected_bboxes = bbox_project(bboxes, homography_matrix,
teacher_img_shape)
selected_results_list.append(InstanceData(bboxes=projected_bboxes))
with torch.no_grad():
results_list = self.teacher.roi_head.predict_bbox(
batch_info['feat'],
batch_info['metainfo'],
selected_results_list,
rcnn_test_cfg=None,
rescale=False)
bg_score = torch.cat(
[results.scores[:, -1] for results in results_list])
# cls_reg_targets[0] is labels
neg_inds = cls_reg_targets[
0] == self.student.roi_head.bbox_head.num_classes
# cls_reg_targets[1] is label_weights
cls_reg_targets[1][neg_inds] = bg_score[neg_inds].detach()
losses = self.student.roi_head.bbox_head.loss(
bbox_results['cls_score'], bbox_results['bbox_pred'], rois,
*cls_reg_targets)
# cls_reg_targets[1] is label_weights
losses['loss_cls'] = losses['loss_cls'] * len(
cls_reg_targets[1]) / max(sum(cls_reg_targets[1]), 1.0)
return losses
def rcnn_reg_loss_by_pseudo_instances(
self, x: Tuple[Tensor], unsup_rpn_results_list: InstanceList,
batch_data_samples: SampleList) -> dict:
"""Calculate rcnn regression loss from a batch of inputs and pseudo
data samples.
Args:
x (tuple[Tensor]): List of multi-level img features.
unsup_rpn_results_list (list[:obj:`InstanceData`]):
List of region proposals.
batch_data_samples (List[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`,
which are `pseudo_instance` or `pseudo_panoptic_seg`
or `pseudo_sem_seg` in fact.
Returns:
dict[str, Tensor]: A dictionary of rcnn
regression loss components
"""
rpn_results_list = copy.deepcopy(unsup_rpn_results_list)
reg_data_samples = copy.deepcopy(batch_data_samples)
for data_samples in reg_data_samples:
if data_samples.gt_instances.bboxes.shape[0] > 0:
data_samples.gt_instances = data_samples.gt_instances[
data_samples.gt_instances.reg_uncs <
self.semi_train_cfg.reg_pseudo_thr]
roi_losses = self.student.roi_head.loss(x, rpn_results_list,
reg_data_samples)
return {'loss_bbox': roi_losses['loss_bbox']}
def compute_uncertainty_with_aug(
self, x: Tuple[Tensor],
batch_data_samples: SampleList) -> List[Tensor]:
"""Compute uncertainty with augmented bboxes.
Args:
x (tuple[Tensor]): List of multi-level img features.
batch_data_samples (List[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`,
which are `pseudo_instance` or `pseudo_panoptic_seg`
or `pseudo_sem_seg` in fact.
Returns:
list[Tensor]: A list of uncertainty for pseudo bboxes.
"""
auged_results_list = self.aug_box(batch_data_samples,
self.semi_train_cfg.jitter_times,
self.semi_train_cfg.jitter_scale)
# flatten
auged_results_list = [
InstanceData(bboxes=auged.reshape(-1, auged.shape[-1]))
for auged in auged_results_list
]
self.teacher.roi_head.test_cfg = None
results_list = self.teacher.roi_head.predict(
x, auged_results_list, batch_data_samples, rescale=False)
self.teacher.roi_head.test_cfg = self.teacher.test_cfg.rcnn
reg_channel = max(
[results.bboxes.shape[-1] for results in results_list]) // 4
bboxes = [
results.bboxes.reshape(self.semi_train_cfg.jitter_times, -1,
results.bboxes.shape[-1])
if results.bboxes.numel() > 0 else results.bboxes.new_zeros(
self.semi_train_cfg.jitter_times, 0, 4 * reg_channel).float()
for results in results_list
]
box_unc = [bbox.std(dim=0) for bbox in bboxes]
bboxes = [bbox.mean(dim=0) for bbox in bboxes]
labels = [
data_samples.gt_instances.labels
for data_samples in batch_data_samples
]
if reg_channel != 1:
bboxes = [
bbox.reshape(bbox.shape[0], reg_channel,
4)[torch.arange(bbox.shape[0]), label]
for bbox, label in zip(bboxes, labels)
]
box_unc = [
unc.reshape(unc.shape[0], reg_channel,
4)[torch.arange(unc.shape[0]), label]
for unc, label in zip(box_unc, labels)
]
box_shape = [(bbox[:, 2:4] - bbox[:, :2]).clamp(min=1.0)
for bbox in bboxes]
box_unc = [
torch.mean(
unc / wh[:, None, :].expand(-1, 2, 2).reshape(-1, 4), dim=-1)
if wh.numel() > 0 else unc for unc, wh in zip(box_unc, box_shape)
]
return box_unc
@staticmethod
def aug_box(batch_data_samples, times, frac):
"""Augment bboxes with jitter."""
def _aug_single(box):
box_scale = box[:, 2:4] - box[:, :2]
box_scale = (
box_scale.clamp(min=1)[:, None, :].expand(-1, 2,
2).reshape(-1, 4))
aug_scale = box_scale * frac # [n,4]
offset = (
torch.randn(times, box.shape[0], 4, device=box.device) *
aug_scale[None, ...])
new_box = box.clone()[None, ...].expand(times, box.shape[0],
-1) + offset
return new_box
return [
_aug_single(data_samples.gt_instances.bboxes)
for data_samples in batch_data_samples
]
|