Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,267 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import warnings
from typing import Tuple
import numpy as np
import torch
from torch import Tensor
# References: https://github.com/ZFTurbo/Weighted-Boxes-Fusion
def weighted_boxes_fusion(
bboxes_list: list,
scores_list: list,
labels_list: list,
weights: list = None,
iou_thr: float = 0.55,
skip_box_thr: float = 0.0,
conf_type: str = 'avg',
allows_overflow: bool = False) -> Tuple[Tensor, Tensor, Tensor]:
"""weighted boxes fusion <https://arxiv.org/abs/1910.13302> is a method for
fusing predictions from different object detection models, which utilizes
confidence scores of all proposed bounding boxes to construct averaged
boxes.
Args:
bboxes_list(list): list of boxes predictions from each model,
each box is 4 numbers.
scores_list(list): list of scores for each model
labels_list(list): list of labels for each model
weights: list of weights for each model.
Default: None, which means weight == 1 for each model
iou_thr: IoU value for boxes to be a match
skip_box_thr: exclude boxes with score lower than this variable.
conf_type: how to calculate confidence in weighted boxes.
'avg': average value,
'max': maximum value,
'box_and_model_avg': box and model wise hybrid weighted average,
'absent_model_aware_avg': weighted average that takes into
account the absent model.
allows_overflow: false if we want confidence score not exceed 1.0.
Returns:
bboxes(Tensor): boxes coordinates (Order of boxes: x1, y1, x2, y2).
scores(Tensor): confidence scores
labels(Tensor): boxes labels
"""
if weights is None:
weights = np.ones(len(bboxes_list))
if len(weights) != len(bboxes_list):
print('Warning: incorrect number of weights {}. Must be: '
'{}. Set weights equal to 1.'.format(
len(weights), len(bboxes_list)))
weights = np.ones(len(bboxes_list))
weights = np.array(weights)
if conf_type not in [
'avg', 'max', 'box_and_model_avg', 'absent_model_aware_avg'
]:
print('Unknown conf_type: {}. Must be "avg", '
'"max" or "box_and_model_avg", '
'or "absent_model_aware_avg"'.format(conf_type))
exit()
filtered_boxes = prefilter_boxes(bboxes_list, scores_list, labels_list,
weights, skip_box_thr)
if len(filtered_boxes) == 0:
return torch.Tensor(), torch.Tensor(), torch.Tensor()
overall_boxes = []
for label in filtered_boxes:
boxes = filtered_boxes[label]
new_boxes = []
weighted_boxes = np.empty((0, 8))
# Clusterize boxes
for j in range(0, len(boxes)):
index, best_iou = find_matching_box_fast(weighted_boxes, boxes[j],
iou_thr)
if index != -1:
new_boxes[index].append(boxes[j])
weighted_boxes[index] = get_weighted_box(
new_boxes[index], conf_type)
else:
new_boxes.append([boxes[j].copy()])
weighted_boxes = np.vstack((weighted_boxes, boxes[j].copy()))
# Rescale confidence based on number of models and boxes
for i in range(len(new_boxes)):
clustered_boxes = new_boxes[i]
if conf_type == 'box_and_model_avg':
clustered_boxes = np.array(clustered_boxes)
# weighted average for boxes
weighted_boxes[i, 1] = weighted_boxes[i, 1] * len(
clustered_boxes) / weighted_boxes[i, 2]
# identify unique model index by model index column
_, idx = np.unique(clustered_boxes[:, 3], return_index=True)
# rescale by unique model weights
weighted_boxes[i, 1] = weighted_boxes[i, 1] * clustered_boxes[
idx, 2].sum() / weights.sum()
elif conf_type == 'absent_model_aware_avg':
clustered_boxes = np.array(clustered_boxes)
# get unique model index in the cluster
models = np.unique(clustered_boxes[:, 3]).astype(int)
# create a mask to get unused model weights
mask = np.ones(len(weights), dtype=bool)
mask[models] = False
# absent model aware weighted average
weighted_boxes[
i, 1] = weighted_boxes[i, 1] * len(clustered_boxes) / (
weighted_boxes[i, 2] + weights[mask].sum())
elif conf_type == 'max':
weighted_boxes[i, 1] = weighted_boxes[i, 1] / weights.max()
elif not allows_overflow:
weighted_boxes[i, 1] = weighted_boxes[i, 1] * min(
len(weights), len(clustered_boxes)) / weights.sum()
else:
weighted_boxes[i, 1] = weighted_boxes[i, 1] * len(
clustered_boxes) / weights.sum()
overall_boxes.append(weighted_boxes)
overall_boxes = np.concatenate(overall_boxes, axis=0)
overall_boxes = overall_boxes[overall_boxes[:, 1].argsort()[::-1]]
bboxes = torch.Tensor(overall_boxes[:, 4:])
scores = torch.Tensor(overall_boxes[:, 1])
labels = torch.Tensor(overall_boxes[:, 0]).int()
return bboxes, scores, labels
def prefilter_boxes(boxes, scores, labels, weights, thr):
new_boxes = dict()
for t in range(len(boxes)):
if len(boxes[t]) != len(scores[t]):
print('Error. Length of boxes arrays not equal to '
'length of scores array: {} != {}'.format(
len(boxes[t]), len(scores[t])))
exit()
if len(boxes[t]) != len(labels[t]):
print('Error. Length of boxes arrays not equal to '
'length of labels array: {} != {}'.format(
len(boxes[t]), len(labels[t])))
exit()
for j in range(len(boxes[t])):
score = scores[t][j]
if score < thr:
continue
label = int(labels[t][j])
box_part = boxes[t][j]
x1 = float(box_part[0])
y1 = float(box_part[1])
x2 = float(box_part[2])
y2 = float(box_part[3])
# Box data checks
if x2 < x1:
warnings.warn('X2 < X1 value in box. Swap them.')
x1, x2 = x2, x1
if y2 < y1:
warnings.warn('Y2 < Y1 value in box. Swap them.')
y1, y2 = y2, y1
if (x2 - x1) * (y2 - y1) == 0.0:
warnings.warn('Zero area box skipped: {}.'.format(box_part))
continue
# [label, score, weight, model index, x1, y1, x2, y2]
b = [
int(label),
float(score) * weights[t], weights[t], t, x1, y1, x2, y2
]
if label not in new_boxes:
new_boxes[label] = []
new_boxes[label].append(b)
# Sort each list in dict by score and transform it to numpy array
for k in new_boxes:
current_boxes = np.array(new_boxes[k])
new_boxes[k] = current_boxes[current_boxes[:, 1].argsort()[::-1]]
return new_boxes
def get_weighted_box(boxes, conf_type='avg'):
box = np.zeros(8, dtype=np.float32)
conf = 0
conf_list = []
w = 0
for b in boxes:
box[4:] += (b[1] * b[4:])
conf += b[1]
conf_list.append(b[1])
w += b[2]
box[0] = boxes[0][0]
if conf_type in ('avg', 'box_and_model_avg', 'absent_model_aware_avg'):
box[1] = conf / len(boxes)
elif conf_type == 'max':
box[1] = np.array(conf_list).max()
box[2] = w
box[3] = -1
box[4:] /= conf
return box
def find_matching_box_fast(boxes_list, new_box, match_iou):
def bb_iou_array(boxes, new_box):
# bb intersection over union
xA = np.maximum(boxes[:, 0], new_box[0])
yA = np.maximum(boxes[:, 1], new_box[1])
xB = np.minimum(boxes[:, 2], new_box[2])
yB = np.minimum(boxes[:, 3], new_box[3])
interArea = np.maximum(xB - xA, 0) * np.maximum(yB - yA, 0)
# compute the area of both the prediction and ground-truth rectangles
boxAArea = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
boxBArea = (new_box[2] - new_box[0]) * (new_box[3] - new_box[1])
iou = interArea / (boxAArea + boxBArea - interArea)
return iou
if boxes_list.shape[0] == 0:
return -1, match_iou
boxes = boxes_list
ious = bb_iou_array(boxes[:, 4:], new_box[4:])
ious[boxes[:, 0] != new_box[0]] = -1
best_idx = np.argmax(ious)
best_iou = ious[best_idx]
if best_iou <= match_iou:
best_iou = match_iou
best_idx = -1
return best_idx, best_iou
|