Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,108 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# This script converts MOT labels into COCO style.
# Official website of the MOT dataset: https://motchallenge.net/
#
# Label format of MOT dataset:
# GTs:
# <frame_id> # starts from 1 but COCO style starts from 0,
# <instance_id>, <x1>, <y1>, <w>, <h>,
# <conf> # conf is annotated as 0 if the object is ignored,
# <class_id>, <visibility>
#
# DETs and Results:
# <frame_id>, <instance_id>, <x1>, <y1>, <w>, <h>, <conf>,
# <x>, <y>, <z> # for 3D objects
import argparse
import os
import os.path as osp
from collections import defaultdict
import mmengine
import numpy as np
from tqdm import tqdm
# Classes in MOT:
CLASSES = [
dict(id=1, name='pedestrian'),
dict(id=2, name='person_on_vehicle'),
dict(id=3, name='car'),
dict(id=4, name='bicycle'),
dict(id=5, name='motorbike'),
dict(id=6, name='non_mot_vehicle'),
dict(id=7, name='static_person'),
dict(id=8, name='distractor'),
dict(id=9, name='occluder'),
dict(id=10, name='occluder_on_ground'),
dict(id=11, name='occluder_full'),
dict(id=12, name='reflection'),
dict(id=13, name='crowd')
]
def parse_args():
parser = argparse.ArgumentParser(
description='Convert MOT label and detections to COCO-VID format.')
parser.add_argument('-i', '--input', help='path of MOT data')
parser.add_argument(
'-o', '--output', help='path to save coco formatted label file')
parser.add_argument(
'--convert-det',
action='store_true',
help='convert official detection results.')
parser.add_argument(
'--split-train',
action='store_true',
help='split the train set into half-train and half-validate.')
return parser.parse_args()
def parse_gts(gts, is_mot15):
outputs = defaultdict(list)
for gt in gts:
gt = gt.strip().split(',')
frame_id, ins_id = map(int, gt[:2])
bbox = list(map(float, gt[2:6]))
if is_mot15:
conf = 1.
category_id = 1
visibility = 1.
else:
conf = float(gt[6])
category_id = int(gt[7])
visibility = float(gt[8])
anns = dict(
category_id=category_id,
bbox=bbox,
area=bbox[2] * bbox[3],
iscrowd=False,
visibility=visibility,
mot_instance_id=ins_id,
mot_conf=conf)
outputs[frame_id].append(anns)
return outputs
def parse_dets(dets):
outputs = defaultdict(list)
for det in dets:
det = det.strip().split(',')
frame_id, ins_id = map(int, det[:2])
assert ins_id == -1
bbox = list(map(float, det[2:7]))
# [x1, y1, x2, y2] to be consistent with mmdet
bbox = [
bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3], bbox[4]
]
outputs[frame_id].append(bbox)
return outputs
def main():
args = parse_args()
if not osp.isdir(args.output):
os.makedirs(args.output)
sets = ['train', 'test']
if args.split_train:
sets += ['half-train', 'half-val']
vid_id, img_id, ann_id = 1, 1, 1
for subset in sets:
ins_id = 0
print(f'Converting {subset} set to COCO format')
if 'half' in subset:
in_folder = osp.join(args.input, 'train')
else:
in_folder = osp.join(args.input, subset)
out_file = osp.join(args.output, f'{subset}_cocoformat.json')
outputs = defaultdict(list)
outputs['categories'] = CLASSES
if args.convert_det:
det_file = osp.join(args.output, f'{subset}_detections.pkl')
detections = dict(det_bboxes=dict())
video_names = os.listdir(in_folder)
for video_name in tqdm(video_names):
# basic params
parse_gt = 'test' not in subset
ins_maps = dict()
# load video infos
video_folder = osp.join(in_folder, video_name)
infos = mmengine.list_from_file(f'{video_folder}/seqinfo.ini')
# video-level infos
assert video_name == infos[1].strip().split('=')[1]
img_folder = infos[2].strip().split('=')[1]
img_names = os.listdir(f'{video_folder}/{img_folder}')
img_names = sorted(img_names)
fps = int(infos[3].strip().split('=')[1])
num_imgs = int(infos[4].strip().split('=')[1])
assert num_imgs == len(img_names)
width = int(infos[5].strip().split('=')[1])
height = int(infos[6].strip().split('=')[1])
video = dict(
id=vid_id,
name=video_name,
fps=fps,
width=width,
height=height)
# parse annotations
if parse_gt:
gts = mmengine.list_from_file(f'{video_folder}/gt/gt.txt')
if 'MOT15' in video_folder:
img2gts = parse_gts(gts, True)
else:
img2gts = parse_gts(gts, False)
if args.convert_det:
dets = mmengine.list_from_file(f'{video_folder}/det/det.txt')
img2dets = parse_dets(dets)
# make half sets
if 'half' in subset:
split_frame = num_imgs // 2 + 1
if 'train' in subset:
img_names = img_names[:split_frame]
elif 'val' in subset:
img_names = img_names[split_frame:]
else:
raise ValueError(
'subset must be named with `train` or `val`')
mot_frame_ids = [str(int(_.split('.')[0])) for _ in img_names]
with open(f'{video_folder}/gt/gt_{subset}.txt', 'wt') as f:
for gt in gts:
if gt.split(',')[0] in mot_frame_ids:
f.writelines(f'{gt}\n')
# image and box level infos
for frame_id, name in enumerate(img_names):
img_name = osp.join(video_name, img_folder, name)
mot_frame_id = int(name.split('.')[0])
image = dict(
id=img_id,
video_id=vid_id,
file_name=img_name,
height=height,
width=width,
frame_id=frame_id,
mot_frame_id=mot_frame_id)
if parse_gt:
gts = img2gts[mot_frame_id]
for gt in gts:
gt.update(id=ann_id, image_id=img_id)
mot_ins_id = gt['mot_instance_id']
if mot_ins_id in ins_maps:
gt['instance_id'] = ins_maps[mot_ins_id]
else:
gt['instance_id'] = ins_id
ins_maps[mot_ins_id] = ins_id
ins_id += 1
outputs['annotations'].append(gt)
ann_id += 1
if args.convert_det:
dets = np.array(img2dets[mot_frame_id])
if dets.ndim == 1:
assert len(dets) == 0
dets = np.zeros((0, 5))
detections['det_bboxes'][img_name] = [dets]
outputs['images'].append(image)
img_id += 1
outputs['videos'].append(video)
vid_id += 1
outputs['num_instances'] = ins_id
print(f'{subset} has {ins_id} instances.')
mmengine.dump(outputs, out_file)
if args.convert_det:
mmengine.dump(detections, det_file)
print(f'Done! Saved as {out_file} and {det_file}')
else:
print(f'Done! Saved as {out_file}')
if __name__ == '__main__':
main()
|