File size: 8,108 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# This script converts MOT labels into COCO style.
# Official website of the MOT dataset: https://motchallenge.net/
#
# Label format of MOT dataset:
#   GTs:
#       <frame_id> # starts from 1 but COCO style starts from 0,
#       <instance_id>, <x1>, <y1>, <w>, <h>,
#       <conf> # conf is annotated as 0 if the object is ignored,
#       <class_id>, <visibility>
#
#   DETs and Results:
#       <frame_id>, <instance_id>, <x1>, <y1>, <w>, <h>, <conf>,
#       <x>, <y>, <z> # for 3D objects

import argparse
import os
import os.path as osp
from collections import defaultdict

import mmengine
import numpy as np
from tqdm import tqdm

# Classes in MOT:
CLASSES = [
    dict(id=1, name='pedestrian'),
    dict(id=2, name='person_on_vehicle'),
    dict(id=3, name='car'),
    dict(id=4, name='bicycle'),
    dict(id=5, name='motorbike'),
    dict(id=6, name='non_mot_vehicle'),
    dict(id=7, name='static_person'),
    dict(id=8, name='distractor'),
    dict(id=9, name='occluder'),
    dict(id=10, name='occluder_on_ground'),
    dict(id=11, name='occluder_full'),
    dict(id=12, name='reflection'),
    dict(id=13, name='crowd')
]


def parse_args():
    parser = argparse.ArgumentParser(
        description='Convert MOT label and detections to COCO-VID format.')
    parser.add_argument('-i', '--input', help='path of MOT data')
    parser.add_argument(
        '-o', '--output', help='path to save coco formatted label file')
    parser.add_argument(
        '--convert-det',
        action='store_true',
        help='convert official detection results.')
    parser.add_argument(
        '--split-train',
        action='store_true',
        help='split the train set into half-train and half-validate.')
    return parser.parse_args()


def parse_gts(gts, is_mot15):
    outputs = defaultdict(list)
    for gt in gts:
        gt = gt.strip().split(',')
        frame_id, ins_id = map(int, gt[:2])
        bbox = list(map(float, gt[2:6]))
        if is_mot15:
            conf = 1.
            category_id = 1
            visibility = 1.
        else:
            conf = float(gt[6])
            category_id = int(gt[7])
            visibility = float(gt[8])
        anns = dict(
            category_id=category_id,
            bbox=bbox,
            area=bbox[2] * bbox[3],
            iscrowd=False,
            visibility=visibility,
            mot_instance_id=ins_id,
            mot_conf=conf)
        outputs[frame_id].append(anns)
    return outputs


def parse_dets(dets):
    outputs = defaultdict(list)
    for det in dets:
        det = det.strip().split(',')
        frame_id, ins_id = map(int, det[:2])
        assert ins_id == -1
        bbox = list(map(float, det[2:7]))
        # [x1, y1, x2, y2] to be consistent with mmdet
        bbox = [
            bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3], bbox[4]
        ]
        outputs[frame_id].append(bbox)

    return outputs


def main():
    args = parse_args()
    if not osp.isdir(args.output):
        os.makedirs(args.output)

    sets = ['train', 'test']
    if args.split_train:
        sets += ['half-train', 'half-val']
    vid_id, img_id, ann_id = 1, 1, 1

    for subset in sets:
        ins_id = 0
        print(f'Converting {subset} set to COCO format')
        if 'half' in subset:
            in_folder = osp.join(args.input, 'train')
        else:
            in_folder = osp.join(args.input, subset)
        out_file = osp.join(args.output, f'{subset}_cocoformat.json')
        outputs = defaultdict(list)
        outputs['categories'] = CLASSES
        if args.convert_det:
            det_file = osp.join(args.output, f'{subset}_detections.pkl')
            detections = dict(det_bboxes=dict())
        video_names = os.listdir(in_folder)
        for video_name in tqdm(video_names):
            # basic params
            parse_gt = 'test' not in subset
            ins_maps = dict()
            # load video infos
            video_folder = osp.join(in_folder, video_name)
            infos = mmengine.list_from_file(f'{video_folder}/seqinfo.ini')
            # video-level infos
            assert video_name == infos[1].strip().split('=')[1]
            img_folder = infos[2].strip().split('=')[1]
            img_names = os.listdir(f'{video_folder}/{img_folder}')
            img_names = sorted(img_names)
            fps = int(infos[3].strip().split('=')[1])
            num_imgs = int(infos[4].strip().split('=')[1])
            assert num_imgs == len(img_names)
            width = int(infos[5].strip().split('=')[1])
            height = int(infos[6].strip().split('=')[1])
            video = dict(
                id=vid_id,
                name=video_name,
                fps=fps,
                width=width,
                height=height)
            # parse annotations
            if parse_gt:
                gts = mmengine.list_from_file(f'{video_folder}/gt/gt.txt')
                if 'MOT15' in video_folder:
                    img2gts = parse_gts(gts, True)
                else:
                    img2gts = parse_gts(gts, False)
            if args.convert_det:
                dets = mmengine.list_from_file(f'{video_folder}/det/det.txt')
                img2dets = parse_dets(dets)
            # make half sets
            if 'half' in subset:
                split_frame = num_imgs // 2 + 1
                if 'train' in subset:
                    img_names = img_names[:split_frame]
                elif 'val' in subset:
                    img_names = img_names[split_frame:]
                else:
                    raise ValueError(
                        'subset must be named with `train` or `val`')
                mot_frame_ids = [str(int(_.split('.')[0])) for _ in img_names]
                with open(f'{video_folder}/gt/gt_{subset}.txt', 'wt') as f:
                    for gt in gts:
                        if gt.split(',')[0] in mot_frame_ids:
                            f.writelines(f'{gt}\n')
            # image and box level infos
            for frame_id, name in enumerate(img_names):
                img_name = osp.join(video_name, img_folder, name)
                mot_frame_id = int(name.split('.')[0])
                image = dict(
                    id=img_id,
                    video_id=vid_id,
                    file_name=img_name,
                    height=height,
                    width=width,
                    frame_id=frame_id,
                    mot_frame_id=mot_frame_id)
                if parse_gt:
                    gts = img2gts[mot_frame_id]
                    for gt in gts:
                        gt.update(id=ann_id, image_id=img_id)
                        mot_ins_id = gt['mot_instance_id']
                        if mot_ins_id in ins_maps:
                            gt['instance_id'] = ins_maps[mot_ins_id]
                        else:
                            gt['instance_id'] = ins_id
                            ins_maps[mot_ins_id] = ins_id
                            ins_id += 1
                        outputs['annotations'].append(gt)
                        ann_id += 1
                if args.convert_det:
                    dets = np.array(img2dets[mot_frame_id])
                    if dets.ndim == 1:
                        assert len(dets) == 0
                        dets = np.zeros((0, 5))
                    detections['det_bboxes'][img_name] = [dets]
                outputs['images'].append(image)
                img_id += 1
            outputs['videos'].append(video)
            vid_id += 1
            outputs['num_instances'] = ins_id
        print(f'{subset} has {ins_id} instances.')
        mmengine.dump(outputs, out_file)
        if args.convert_det:
            mmengine.dump(detections, det_file)
            print(f'Done! Saved as {out_file} and {det_file}')
        else:
            print(f'Done! Saved as {out_file}')


if __name__ == '__main__':
    main()