Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,366 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Modified from
# https://github.com/facebookresearch/fvcore/blob/main/fvcore/nn/jit_handles.py
import typing
from collections import Counter, OrderedDict
from typing import Any, Callable, List, Optional, Union
import numpy as np
try:
from math import prod # type: ignore
except ImportError:
from numpy import prod as _prod # type: ignore
# Patch `numpy.prod` to avoid overflow on Windows by converting its result
# from `np.int32` to `int`.
def prod(*args, **kwargs): # type: ignore
return _prod(*args, **kwargs).item()
Handle = Callable[[List[Any], List[Any]], Union[typing.Counter[str], int]]
def get_shape(val: Any) -> Optional[List[int]]:
"""Get the shapes from a jit value object.
Args:
val (torch._C.Value): jit value object.
Returns:
list(int): return a list of ints.
"""
if val.isCompleteTensor():
return val.type().sizes()
else:
return None # type: ignore
"""
Below are flop/activation counters for various ops.
Every counter has the following signature:
Args:
inputs (list(torch._C.Value)):
The inputs of the op in the form of a list of jit object.
outputs (list(torch._C.Value)):
The outputs of the op in the form of a list of jit object.
Returns:
number: The number of flops/activations for the operation.
or Counter[str]
"""
def generic_activation_jit(op_name: Optional[str] = None) -> Handle:
"""This method returns a handle that counts the number of activation from
the output shape for the specified operation.
Args:
op_name (str): The name of the operation. If given, the handle will
return a counter using this name.
Returns:
Callable: An activation handle for the given operation.
"""
def _generic_activation_jit(
i: Any, outputs: List[Any]) -> Union[typing.Counter[str], int]:
"""This is a generic jit handle that counts the number of activations
for any operation given the output shape."""
out_shape = get_shape(outputs[0])
ac_count = prod(out_shape) # type: ignore
if op_name is None:
return ac_count # type: ignore
else:
return Counter({op_name: ac_count})
return _generic_activation_jit
def addmm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Union[int, Any]:
"""Count flops for fully connected layers."""
# Count flop for nn.Linear
# inputs is a list of length 3.
input_shapes = [get_shape(v) for v in inputs[1:3]]
# input_shapes[0]: [batch size, input feature dimension]
# input_shapes[1]: [batch size, output feature dimension]
assert len(input_shapes[0]) == 2, input_shapes[0] # type: ignore
assert len(input_shapes[1]) == 2, input_shapes[1] # type: ignore
batch_size, input_dim = input_shapes[0] # type: ignore
output_dim = input_shapes[1][1] # type: ignore
flops = batch_size * input_dim * output_dim
return flops
def linear_flop_jit(inputs: List[Any], outputs: List[Any]) -> Union[int, Any]:
"""Count flops for the aten::linear operator."""
# Inputs is a list of length 3; unlike aten::addmm, it is the first
# two elements that are relevant.
input_shapes = [get_shape(v) for v in inputs[0:2]]
# input_shapes[0]: [dim0, dim1, ..., input_feature_dim]
# input_shapes[1]: [output_feature_dim, input_feature_dim]
assert input_shapes[0][-1] == input_shapes[1][-1] # type: ignore
flops = prod(input_shapes[0]) * input_shapes[1][0] # type: ignore
return flops
def bmm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Union[int, Any]:
"""Count flops for the bmm operation."""
# Inputs should be a list of length 2.
# Inputs contains the shapes of two tensor.
assert len(inputs) == 2, len(inputs)
input_shapes = [get_shape(v) for v in inputs]
n, c, t = input_shapes[0] # type: ignore
d = input_shapes[-1][-1] # type: ignore
flop = n * c * t * d
return flop
def conv_flop_count(
x_shape: List[int],
w_shape: List[int],
out_shape: List[int],
transposed: bool = False,
) -> Union[int, Any]:
"""Count flops for convolution. Note only multiplication is counted.
Computation for addition and bias is ignored. Flops for a transposed
convolution are calculated as.
flops = (x_shape[2:] * prod(w_shape) * batch_size).
Args:
x_shape (list(int)): The input shape before convolution.
w_shape (list(int)): The filter shape.
out_shape (list(int)): The output shape after convolution.
transposed (bool): is the convolution transposed
Returns:
int: the number of flops
"""
batch_size = x_shape[0]
conv_shape = (x_shape if transposed else out_shape)[2:]
flop = batch_size * prod(w_shape) * prod(conv_shape)
return flop
def conv_flop_jit(inputs: List[Any],
outputs: List[Any]) -> typing.Counter[str]:
"""Count flops for convolution."""
# Inputs of Convolution should be a list of length 12 or 13.
# They represent:
# 0) input tensor, 1) convolution filter, 2) bias, 3) stride, 4) padding,
# 5) dilation, 6) transposed, 7) out_pad, 8) groups, 9) benchmark_cudnn,
# 10) deterministic_cudnn and 11) user_enabled_cudnn.
# starting with #40737 it will be 12) user_enabled_tf32
assert len(inputs) == 12 or len(inputs) == 13, len(inputs)
x, w = inputs[:2]
x_shape, w_shape, out_shape = (get_shape(x), get_shape(w),
get_shape(outputs[0]))
transposed = inputs[6].toIValue()
# use a custom name instead of "_convolution"
return Counter({
'conv':
conv_flop_count(
x_shape, # type: ignore
w_shape, # type: ignore
out_shape, # type: ignore
transposed=transposed) # type: ignore
})
def einsum_flop_jit(inputs: List[Any], outputs: List[Any]) -> Union[int, Any]:
"""Count flops for the einsum operation."""
# Inputs of einsum should be a list of length 2+.
# Inputs[0] stores the equation used for einsum.
# Inputs[1] stores the list of input shapes.
assert len(inputs) >= 2, len(inputs)
equation = inputs[0].toIValue()
# Get rid of white space in the equation string.
equation = equation.replace(' ', '')
input_shapes_jit = inputs[1].node().inputs()
input_shapes = [get_shape(v) for v in input_shapes_jit]
# Re-map equation so that same equation with different alphabet
# representations will look the same.
letter_order = OrderedDict((k, 0) for k in equation if k.isalpha()).keys()
mapping = {ord(x): 97 + i for i, x in enumerate(letter_order)}
equation = equation.translate(mapping)
if equation == 'abc,abd->acd':
n, c, t = input_shapes[0] # type: ignore
p = input_shapes[-1][-1] # type: ignore
flop = n * c * t * p
return flop
elif equation == 'abc,adc->adb':
n, t, g = input_shapes[0] # type: ignore
c = input_shapes[-1][1] # type: ignore
flop = n * t * g * c
return flop
else:
np_arrs = [np.zeros(s) for s in input_shapes]
optim = np.einsum_path(equation, *np_arrs, optimize='optimal')[1]
for line in optim.split('\n'):
if 'optimized flop' in line.lower():
# divided by 2 because we count MAC
# (multiply-add counted as one flop)
flop = float(np.floor(float(line.split(':')[-1]) / 2))
return flop
raise NotImplementedError('Unsupported einsum operation.')
def matmul_flop_jit(inputs: List[Any], outputs: List[Any]) -> Union[int, Any]:
"""Count flops for matmul."""
# input_shapes is a list of length 2.
input_shapes: list = [get_shape(v) for v in inputs]
input1, input2 = input_shapes
if len(input1) == 1:
input1 = [1, input1[0]]
if len(input2) == 1:
input2 = [input2[0], 1]
assert input1[-1] == input2[-2], input_shapes
flop = prod(input1) * input2[-1]
return flop
def norm_flop_counter(affine_arg_index: int) -> Handle:
"""
Args:
affine_arg_index: index of the affine argument in inputs
"""
def norm_flop_jit(inputs: List[Any],
outputs: List[Any]) -> Union[int, Any]:
"""Count flops for norm layers."""
# Inputs[0] contains the shape of the input.
input_shape = get_shape(inputs[0])
has_affine = get_shape(inputs[affine_arg_index]) is not None
assert 2 <= len(input_shape) <= 5, input_shape # type: ignore
# 5 is just a rough estimate
flop = prod(input_shape) * (5 if has_affine else 4) # type: ignore
return flop
return norm_flop_jit
def batchnorm_flop_jit(inputs: List[Any],
outputs: List[Any]) -> Union[int, Any]:
training = inputs[5].toIValue()
assert isinstance(training,
bool), 'Signature of aten::batch_norm has changed!'
if training:
return norm_flop_counter(1)(inputs, outputs) # pyre-ignore
has_affine = get_shape(inputs[1]) is not None
input_shape = prod(get_shape(inputs[0])) # type: ignore
return input_shape * (2 if has_affine else 1)
def elementwise_flop_counter(input_scale: float = 1,
output_scale: float = 0) -> Handle:
"""Count flops by.
input_tensor.numel() * input_scale +
output_tensor.numel() * output_scale
Args:
input_scale: scale of the input tensor (first argument)
output_scale: scale of the output tensor (first element in outputs)
"""
def elementwise_flop(inputs: List[Any],
outputs: List[Any]) -> Union[int, Any]:
ret = 0
if input_scale != 0:
shape = get_shape(inputs[0])
ret += input_scale * prod(shape) # type: ignore
if output_scale != 0:
shape = get_shape(outputs[0])
ret += output_scale * prod(shape) # type: ignore
return ret
return elementwise_flop
|