Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Dict | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmengine.registry import MODELS | |
from mmengine.utils import digit_version | |
from mmengine.utils.dl_utils import TORCH_VERSION | |
for module in [ | |
nn.ReLU, nn.LeakyReLU, nn.PReLU, nn.RReLU, nn.ReLU6, nn.ELU, | |
nn.Sigmoid, nn.Tanh | |
]: | |
MODELS.register_module(module=module) | |
if digit_version(torch.__version__) >= digit_version('1.7.0'): | |
MODELS.register_module(module=nn.SiLU, name='SiLU') | |
else: | |
class SiLU(nn.Module): | |
"""Sigmoid Weighted Liner Unit.""" | |
def __init__(self, inplace=False): | |
super().__init__() | |
self.inplace = inplace | |
def forward(self, inputs) -> torch.Tensor: | |
if self.inplace: | |
return inputs.mul_(torch.sigmoid(inputs)) | |
else: | |
return inputs * torch.sigmoid(inputs) | |
MODELS.register_module(module=SiLU, name='SiLU') | |
class Clamp(nn.Module): | |
"""Clamp activation layer. | |
This activation function is to clamp the feature map value within | |
:math:`[min, max]`. More details can be found in ``torch.clamp()``. | |
Args: | |
min (Number | optional): Lower-bound of the range to be clamped to. | |
Default to -1. | |
max (Number | optional): Upper-bound of the range to be clamped to. | |
Default to 1. | |
""" | |
def __init__(self, min: float = -1., max: float = 1.): | |
super().__init__() | |
self.min = min | |
self.max = max | |
def forward(self, x) -> torch.Tensor: | |
"""Forward function. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: Clamped tensor. | |
""" | |
return torch.clamp(x, min=self.min, max=self.max) | |
class GELU(nn.Module): | |
r"""Applies the Gaussian Error Linear Units function: | |
.. math:: | |
\text{GELU}(x) = x * \Phi(x) | |
where :math:`\Phi(x)` is the Cumulative Distribution Function for | |
Gaussian Distribution. | |
Shape: | |
- Input: :math:`(N, *)` where `*` means, any number of additional | |
dimensions | |
- Output: :math:`(N, *)`, same shape as the input | |
.. image:: scripts/activation_images/GELU.png | |
Examples:: | |
>>> m = nn.GELU() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
""" | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
return F.gelu(input) | |
if (TORCH_VERSION == 'parrots' | |
or digit_version(TORCH_VERSION) < digit_version('1.4')): | |
MODELS.register_module(module=GELU) | |
else: | |
MODELS.register_module(module=nn.GELU) | |
def build_activation_layer(cfg: Dict) -> nn.Module: | |
"""Build activation layer. | |
Args: | |
cfg (dict): The activation layer config, which should contain: | |
- type (str): Layer type. | |
- layer args: Args needed to instantiate an activation layer. | |
Returns: | |
nn.Module: Created activation layer. | |
""" | |
return MODELS.build(cfg) | |