rawalkhirodkar's picture
Add initial commit
28c256d
raw
history blame
14.1 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os.path as osp
from typing import Callable, List, Optional, Sequence, Union
from mmdet.registry import DATASETS
from .api_wrappers import COCOPanoptic
from .coco import CocoDataset
@DATASETS.register_module()
class CocoPanopticDataset(CocoDataset):
"""Coco dataset for Panoptic segmentation.
The annotation format is shown as follows. The `ann` field is optional
for testing.
.. code-block:: none
[
{
'filename': f'{image_id:012}.png',
'image_id':9
'segments_info':
[
{
'id': 8345037, (segment_id in panoptic png,
convert from rgb)
'category_id': 51,
'iscrowd': 0,
'bbox': (x1, y1, w, h),
'area': 24315
},
...
]
},
...
]
Args:
ann_file (str): Annotation file path. Defaults to ''.
metainfo (dict, optional): Meta information for dataset, such as class
information. Defaults to None.
data_root (str, optional): The root directory for ``data_prefix`` and
``ann_file``. Defaults to None.
data_prefix (dict, optional): Prefix for training data. Defaults to
``dict(img=None, ann=None, seg=None)``. The prefix ``seg`` which is
for panoptic segmentation map must be not None.
filter_cfg (dict, optional): Config for filter data. Defaults to None.
indices (int or Sequence[int], optional): Support using first few
data in annotation file to facilitate training/testing on a smaller
dataset. Defaults to None which means using all ``data_infos``.
serialize_data (bool, optional): Whether to hold memory using
serialized objects, when enabled, data loader workers can use
shared RAM from master process instead of making a copy. Defaults
to True.
pipeline (list, optional): Processing pipeline. Defaults to [].
test_mode (bool, optional): ``test_mode=True`` means in test phase.
Defaults to False.
lazy_init (bool, optional): Whether to load annotation during
instantiation. In some cases, such as visualization, only the meta
information of the dataset is needed, which is not necessary to
load annotation file. ``Basedataset`` can skip load annotations to
save time by set ``lazy_init=False``. Defaults to False.
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
None img. The maximum extra number of cycles to get a valid
image. Defaults to 1000.
"""
METAINFO = {
'classes':
('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner',
'blanket', 'bridge', 'cardboard', 'counter', 'curtain', 'door-stuff',
'floor-wood', 'flower', 'fruit', 'gravel', 'house', 'light',
'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield',
'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow',
'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile',
'wall-wood', 'water-other', 'window-blind', 'window-other',
'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
'cabinet-merged', 'table-merged', 'floor-other-merged',
'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged',
'paper-merged', 'food-other-merged', 'building-other-merged',
'rock-merged', 'wall-other-merged', 'rug-merged'),
'thing_classes':
('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush'),
'stuff_classes':
('banner', 'blanket', 'bridge', 'cardboard', 'counter', 'curtain',
'door-stuff', 'floor-wood', 'flower', 'fruit', 'gravel', 'house',
'light', 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield',
'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow',
'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile',
'wall-wood', 'water-other', 'window-blind', 'window-other',
'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
'cabinet-merged', 'table-merged', 'floor-other-merged',
'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged',
'paper-merged', 'food-other-merged', 'building-other-merged',
'rock-merged', 'wall-other-merged', 'rug-merged'),
'palette':
[(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), (106, 0, 228),
(0, 60, 100), (0, 80, 100), (0, 0, 70), (0, 0, 192), (250, 170, 30),
(100, 170, 30), (220, 220, 0), (175, 116, 175), (250, 0, 30),
(165, 42, 42), (255, 77, 255), (0, 226, 252), (182, 182, 255),
(0, 82, 0), (120, 166, 157), (110, 76, 0), (174, 57, 255),
(199, 100, 0), (72, 0, 118), (255, 179, 240), (0, 125, 92),
(209, 0, 151), (188, 208, 182), (0, 220, 176), (255, 99, 164),
(92, 0, 73), (133, 129, 255), (78, 180, 255), (0, 228, 0),
(174, 255, 243), (45, 89, 255), (134, 134, 103), (145, 148, 174),
(255, 208, 186), (197, 226, 255), (171, 134, 1), (109, 63, 54),
(207, 138, 255), (151, 0, 95), (9, 80, 61), (84, 105, 51),
(74, 65, 105), (166, 196, 102), (208, 195, 210), (255, 109, 65),
(0, 143, 149), (179, 0, 194), (209, 99, 106), (5, 121, 0),
(227, 255, 205), (147, 186, 208), (153, 69, 1), (3, 95, 161),
(163, 255, 0), (119, 0, 170), (0, 182, 199), (0, 165, 120),
(183, 130, 88), (95, 32, 0), (130, 114, 135), (110, 129, 133),
(166, 74, 118), (219, 142, 185), (79, 210, 114), (178, 90, 62),
(65, 70, 15), (127, 167, 115), (59, 105, 106), (142, 108, 45),
(196, 172, 0), (95, 54, 80), (128, 76, 255), (201, 57, 1),
(246, 0, 122), (191, 162, 208), (255, 255, 128), (147, 211, 203),
(150, 100, 100), (168, 171, 172), (146, 112, 198), (210, 170, 100),
(92, 136, 89), (218, 88, 184), (241, 129, 0), (217, 17, 255),
(124, 74, 181), (70, 70, 70), (255, 228, 255), (154, 208, 0),
(193, 0, 92), (76, 91, 113), (255, 180, 195), (106, 154, 176),
(230, 150, 140), (60, 143, 255), (128, 64, 128), (92, 82, 55),
(254, 212, 124), (73, 77, 174), (255, 160, 98), (255, 255, 255),
(104, 84, 109), (169, 164, 131), (225, 199, 255), (137, 54, 74),
(135, 158, 223), (7, 246, 231), (107, 255, 200), (58, 41, 149),
(183, 121, 142), (255, 73, 97), (107, 142, 35), (190, 153, 153),
(146, 139, 141), (70, 130, 180), (134, 199, 156), (209, 226, 140),
(96, 36, 108), (96, 96, 96), (64, 170, 64), (152, 251, 152),
(208, 229, 228), (206, 186, 171), (152, 161, 64), (116, 112, 0),
(0, 114, 143), (102, 102, 156), (250, 141, 255)]
}
COCOAPI = COCOPanoptic
# ann_id is not unique in coco panoptic dataset.
ANN_ID_UNIQUE = False
def __init__(self,
ann_file: str = '',
metainfo: Optional[dict] = None,
data_root: Optional[str] = None,
data_prefix: dict = dict(img=None, ann=None, seg=None),
filter_cfg: Optional[dict] = None,
indices: Optional[Union[int, Sequence[int]]] = None,
serialize_data: bool = True,
pipeline: List[Union[dict, Callable]] = [],
test_mode: bool = False,
lazy_init: bool = False,
max_refetch: int = 1000,
backend_args: dict = None,
**kwargs) -> None:
super().__init__(
ann_file=ann_file,
metainfo=metainfo,
data_root=data_root,
data_prefix=data_prefix,
filter_cfg=filter_cfg,
indices=indices,
serialize_data=serialize_data,
pipeline=pipeline,
test_mode=test_mode,
lazy_init=lazy_init,
max_refetch=max_refetch,
backend_args=backend_args,
**kwargs)
def parse_data_info(self, raw_data_info: dict) -> dict:
"""Parse raw annotation to target format.
Args:
raw_data_info (dict): Raw data information load from ``ann_file``.
Returns:
dict: Parsed annotation.
"""
img_info = raw_data_info['raw_img_info']
ann_info = raw_data_info['raw_ann_info']
# filter out unmatched annotations which have
# same segment_id but belong to other image
ann_info = [
ann for ann in ann_info if ann['image_id'] == img_info['img_id']
]
data_info = {}
img_path = osp.join(self.data_prefix['img'], img_info['file_name'])
if self.data_prefix.get('seg', None):
seg_map_path = osp.join(
self.data_prefix['seg'],
img_info['file_name'].replace('jpg', 'png'))
else:
seg_map_path = None
data_info['img_path'] = img_path
data_info['img_id'] = img_info['img_id']
data_info['seg_map_path'] = seg_map_path
data_info['height'] = img_info['height']
data_info['width'] = img_info['width']
if self.return_classes:
data_info['text'] = self.metainfo['thing_classes']
data_info['stuff_text'] = self.metainfo['stuff_classes']
data_info['custom_entities'] = True # no important
instances = []
segments_info = []
for ann in ann_info:
instance = {}
x1, y1, w, h = ann['bbox']
if ann['area'] <= 0 or w < 1 or h < 1:
continue
bbox = [x1, y1, x1 + w, y1 + h]
category_id = ann['category_id']
contiguous_cat_id = self.cat2label[category_id]
is_thing = self.coco.load_cats(ids=category_id)[0]['isthing']
if is_thing:
is_crowd = ann.get('iscrowd', False)
instance['bbox'] = bbox
instance['bbox_label'] = contiguous_cat_id
if not is_crowd:
instance['ignore_flag'] = 0
else:
instance['ignore_flag'] = 1
is_thing = False
segment_info = {
'id': ann['id'],
'category': contiguous_cat_id,
'is_thing': is_thing
}
segments_info.append(segment_info)
if len(instance) > 0 and is_thing:
instances.append(instance)
data_info['instances'] = instances
data_info['segments_info'] = segments_info
return data_info
def filter_data(self) -> List[dict]:
"""Filter images too small or without ground truth.
Returns:
List[dict]: ``self.data_list`` after filtering.
"""
if self.test_mode:
return self.data_list
if self.filter_cfg is None:
return self.data_list
filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False)
min_size = self.filter_cfg.get('min_size', 0)
ids_with_ann = set()
# check whether images have legal thing annotations.
for data_info in self.data_list:
for segment_info in data_info['segments_info']:
if not segment_info['is_thing']:
continue
ids_with_ann.add(data_info['img_id'])
valid_data_list = []
for data_info in self.data_list:
img_id = data_info['img_id']
width = data_info['width']
height = data_info['height']
if filter_empty_gt and img_id not in ids_with_ann:
continue
if min(width, height) >= min_size:
valid_data_list.append(data_info)
return valid_data_list