Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Optional, Sequence | |
import numpy as np | |
from mmcv.transforms import to_tensor | |
from mmcv.transforms.base import BaseTransform | |
from mmengine.structures import InstanceData, PixelData | |
from mmdet.registry import TRANSFORMS | |
from mmdet.structures import DetDataSample, ReIDDataSample, TrackDataSample | |
from mmdet.structures.bbox import BaseBoxes | |
class PackDetInputs(BaseTransform): | |
"""Pack the inputs data for the detection / semantic segmentation / | |
panoptic segmentation. | |
The ``img_meta`` item is always populated. The contents of the | |
``img_meta`` dictionary depends on ``meta_keys``. By default this includes: | |
- ``img_id``: id of the image | |
- ``img_path``: path to the image file | |
- ``ori_shape``: original shape of the image as a tuple (h, w) | |
- ``img_shape``: shape of the image input to the network as a tuple \ | |
(h, w). Note that images may be zero padded on the \ | |
bottom/right if the batch tensor is larger than this shape. | |
- ``scale_factor``: a float indicating the preprocessing scale | |
- ``flip``: a boolean indicating if image flip transform was used | |
- ``flip_direction``: the flipping direction | |
Args: | |
meta_keys (Sequence[str], optional): Meta keys to be converted to | |
``mmcv.DataContainer`` and collected in ``data[img_metas]``. | |
Default: ``('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor', 'flip', 'flip_direction')`` | |
""" | |
mapping_table = { | |
'gt_bboxes': 'bboxes', | |
'gt_bboxes_labels': 'labels', | |
'gt_masks': 'masks' | |
} | |
def __init__(self, | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor', 'flip', 'flip_direction')): | |
self.meta_keys = meta_keys | |
def transform(self, results: dict) -> dict: | |
"""Method to pack the input data. | |
Args: | |
results (dict): Result dict from the data pipeline. | |
Returns: | |
dict: | |
- 'inputs' (obj:`torch.Tensor`): The forward data of models. | |
- 'data_sample' (obj:`DetDataSample`): The annotation info of the | |
sample. | |
""" | |
packed_results = dict() | |
if 'img' in results: | |
img = results['img'] | |
if len(img.shape) < 3: | |
img = np.expand_dims(img, -1) | |
# To improve the computational speed by by 3-5 times, apply: | |
# If image is not contiguous, use | |
# `numpy.transpose()` followed by `numpy.ascontiguousarray()` | |
# If image is already contiguous, use | |
# `torch.permute()` followed by `torch.contiguous()` | |
# Refer to https://github.com/open-mmlab/mmdetection/pull/9533 | |
# for more details | |
if not img.flags.c_contiguous: | |
img = np.ascontiguousarray(img.transpose(2, 0, 1)) | |
img = to_tensor(img) | |
else: | |
img = to_tensor(img).permute(2, 0, 1).contiguous() | |
packed_results['inputs'] = img | |
if 'gt_ignore_flags' in results: | |
valid_idx = np.where(results['gt_ignore_flags'] == 0)[0] | |
ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0] | |
data_sample = DetDataSample() | |
instance_data = InstanceData() | |
ignore_instance_data = InstanceData() | |
for key in self.mapping_table.keys(): | |
if key not in results: | |
continue | |
if key == 'gt_masks' or isinstance(results[key], BaseBoxes): | |
if 'gt_ignore_flags' in results: | |
instance_data[ | |
self.mapping_table[key]] = results[key][valid_idx] | |
ignore_instance_data[ | |
self.mapping_table[key]] = results[key][ignore_idx] | |
else: | |
instance_data[self.mapping_table[key]] = results[key] | |
else: | |
if 'gt_ignore_flags' in results: | |
instance_data[self.mapping_table[key]] = to_tensor( | |
results[key][valid_idx]) | |
ignore_instance_data[self.mapping_table[key]] = to_tensor( | |
results[key][ignore_idx]) | |
else: | |
instance_data[self.mapping_table[key]] = to_tensor( | |
results[key]) | |
data_sample.gt_instances = instance_data | |
data_sample.ignored_instances = ignore_instance_data | |
if 'proposals' in results: | |
proposals = InstanceData( | |
bboxes=to_tensor(results['proposals']), | |
scores=to_tensor(results['proposals_scores'])) | |
data_sample.proposals = proposals | |
if 'gt_seg_map' in results: | |
gt_sem_seg_data = dict( | |
sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy())) | |
gt_sem_seg_data = PixelData(**gt_sem_seg_data) | |
if 'ignore_index' in results: | |
metainfo = dict(ignore_index=results['ignore_index']) | |
gt_sem_seg_data.set_metainfo(metainfo) | |
data_sample.gt_sem_seg = gt_sem_seg_data | |
img_meta = {} | |
for key in self.meta_keys: | |
if key in results: | |
img_meta[key] = results[key] | |
data_sample.set_metainfo(img_meta) | |
packed_results['data_samples'] = data_sample | |
return packed_results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(meta_keys={self.meta_keys})' | |
return repr_str | |
class ToTensor: | |
"""Convert some results to :obj:`torch.Tensor` by given keys. | |
Args: | |
keys (Sequence[str]): Keys that need to be converted to Tensor. | |
""" | |
def __init__(self, keys): | |
self.keys = keys | |
def __call__(self, results): | |
"""Call function to convert data in results to :obj:`torch.Tensor`. | |
Args: | |
results (dict): Result dict contains the data to convert. | |
Returns: | |
dict: The result dict contains the data converted | |
to :obj:`torch.Tensor`. | |
""" | |
for key in self.keys: | |
results[key] = to_tensor(results[key]) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(keys={self.keys})' | |
class ImageToTensor: | |
"""Convert image to :obj:`torch.Tensor` by given keys. | |
The dimension order of input image is (H, W, C). The pipeline will convert | |
it to (C, H, W). If only 2 dimension (H, W) is given, the output would be | |
(1, H, W). | |
Args: | |
keys (Sequence[str]): Key of images to be converted to Tensor. | |
""" | |
def __init__(self, keys): | |
self.keys = keys | |
def __call__(self, results): | |
"""Call function to convert image in results to :obj:`torch.Tensor` and | |
transpose the channel order. | |
Args: | |
results (dict): Result dict contains the image data to convert. | |
Returns: | |
dict: The result dict contains the image converted | |
to :obj:`torch.Tensor` and permuted to (C, H, W) order. | |
""" | |
for key in self.keys: | |
img = results[key] | |
if len(img.shape) < 3: | |
img = np.expand_dims(img, -1) | |
results[key] = to_tensor(img).permute(2, 0, 1).contiguous() | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(keys={self.keys})' | |
class Transpose: | |
"""Transpose some results by given keys. | |
Args: | |
keys (Sequence[str]): Keys of results to be transposed. | |
order (Sequence[int]): Order of transpose. | |
""" | |
def __init__(self, keys, order): | |
self.keys = keys | |
self.order = order | |
def __call__(self, results): | |
"""Call function to transpose the channel order of data in results. | |
Args: | |
results (dict): Result dict contains the data to transpose. | |
Returns: | |
dict: The result dict contains the data transposed to \ | |
``self.order``. | |
""" | |
for key in self.keys: | |
results[key] = results[key].transpose(self.order) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + \ | |
f'(keys={self.keys}, order={self.order})' | |
class WrapFieldsToLists: | |
"""Wrap fields of the data dictionary into lists for evaluation. | |
This class can be used as a last step of a test or validation | |
pipeline for single image evaluation or inference. | |
Example: | |
>>> test_pipeline = [ | |
>>> dict(type='LoadImageFromFile'), | |
>>> dict(type='Normalize', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
to_rgb=True), | |
>>> dict(type='Pad', size_divisor=32), | |
>>> dict(type='ImageToTensor', keys=['img']), | |
>>> dict(type='Collect', keys=['img']), | |
>>> dict(type='WrapFieldsToLists') | |
>>> ] | |
""" | |
def __call__(self, results): | |
"""Call function to wrap fields into lists. | |
Args: | |
results (dict): Result dict contains the data to wrap. | |
Returns: | |
dict: The result dict where value of ``self.keys`` are wrapped \ | |
into list. | |
""" | |
# Wrap dict fields into lists | |
for key, val in results.items(): | |
results[key] = [val] | |
return results | |
def __repr__(self): | |
return f'{self.__class__.__name__}()' | |
class PackTrackInputs(BaseTransform): | |
"""Pack the inputs data for the multi object tracking and video instance | |
segmentation. All the information of images are packed to ``inputs``. All | |
the information except images are packed to ``data_samples``. In order to | |
get the original annotaiton and meta info, we add `instances` key into meta | |
keys. | |
Args: | |
meta_keys (Sequence[str]): Meta keys to be collected in | |
``data_sample.metainfo``. Defaults to None. | |
default_meta_keys (tuple): Default meta keys. Defaults to ('img_id', | |
'img_path', 'ori_shape', 'img_shape', 'scale_factor', | |
'flip', 'flip_direction', 'frame_id', 'is_video_data', | |
'video_id', 'video_length', 'instances'). | |
""" | |
mapping_table = { | |
'gt_bboxes': 'bboxes', | |
'gt_bboxes_labels': 'labels', | |
'gt_masks': 'masks', | |
'gt_instances_ids': 'instances_ids' | |
} | |
def __init__(self, | |
meta_keys: Optional[dict] = None, | |
default_meta_keys: tuple = ('img_id', 'img_path', 'ori_shape', | |
'img_shape', 'scale_factor', | |
'flip', 'flip_direction', | |
'frame_id', 'video_id', | |
'video_length', | |
'ori_video_length', 'instances')): | |
self.meta_keys = default_meta_keys | |
if meta_keys is not None: | |
if isinstance(meta_keys, str): | |
meta_keys = (meta_keys, ) | |
else: | |
assert isinstance(meta_keys, tuple), \ | |
'meta_keys must be str or tuple' | |
self.meta_keys += meta_keys | |
def transform(self, results: dict) -> dict: | |
"""Method to pack the input data. | |
Args: | |
results (dict): Result dict from the data pipeline. | |
Returns: | |
dict: | |
- 'inputs' (dict[Tensor]): The forward data of models. | |
- 'data_samples' (obj:`TrackDataSample`): The annotation info of | |
the samples. | |
""" | |
packed_results = dict() | |
packed_results['inputs'] = dict() | |
# 1. Pack images | |
if 'img' in results: | |
imgs = results['img'] | |
imgs = np.stack(imgs, axis=0) | |
imgs = imgs.transpose(0, 3, 1, 2) | |
packed_results['inputs'] = to_tensor(imgs) | |
# 2. Pack InstanceData | |
if 'gt_ignore_flags' in results: | |
gt_ignore_flags_list = results['gt_ignore_flags'] | |
valid_idx_list, ignore_idx_list = [], [] | |
for gt_ignore_flags in gt_ignore_flags_list: | |
valid_idx = np.where(gt_ignore_flags == 0)[0] | |
ignore_idx = np.where(gt_ignore_flags == 1)[0] | |
valid_idx_list.append(valid_idx) | |
ignore_idx_list.append(ignore_idx) | |
assert 'img_id' in results, "'img_id' must contained in the results " | |
'for counting the number of images' | |
num_imgs = len(results['img_id']) | |
instance_data_list = [InstanceData() for _ in range(num_imgs)] | |
ignore_instance_data_list = [InstanceData() for _ in range(num_imgs)] | |
for key in self.mapping_table.keys(): | |
if key not in results: | |
continue | |
if key == 'gt_masks': | |
mapped_key = self.mapping_table[key] | |
gt_masks_list = results[key] | |
if 'gt_ignore_flags' in results: | |
for i, gt_mask in enumerate(gt_masks_list): | |
valid_idx, ignore_idx = valid_idx_list[ | |
i], ignore_idx_list[i] | |
instance_data_list[i][mapped_key] = gt_mask[valid_idx] | |
ignore_instance_data_list[i][mapped_key] = gt_mask[ | |
ignore_idx] | |
else: | |
for i, gt_mask in enumerate(gt_masks_list): | |
instance_data_list[i][mapped_key] = gt_mask | |
else: | |
anns_list = results[key] | |
if 'gt_ignore_flags' in results: | |
for i, ann in enumerate(anns_list): | |
valid_idx, ignore_idx = valid_idx_list[ | |
i], ignore_idx_list[i] | |
instance_data_list[i][ | |
self.mapping_table[key]] = to_tensor( | |
ann[valid_idx]) | |
ignore_instance_data_list[i][ | |
self.mapping_table[key]] = to_tensor( | |
ann[ignore_idx]) | |
else: | |
for i, ann in enumerate(anns_list): | |
instance_data_list[i][ | |
self.mapping_table[key]] = to_tensor(ann) | |
det_data_samples_list = [] | |
for i in range(num_imgs): | |
det_data_sample = DetDataSample() | |
det_data_sample.gt_instances = instance_data_list[i] | |
det_data_sample.ignored_instances = ignore_instance_data_list[i] | |
det_data_samples_list.append(det_data_sample) | |
# 3. Pack metainfo | |
for key in self.meta_keys: | |
if key not in results: | |
continue | |
img_metas_list = results[key] | |
for i, img_meta in enumerate(img_metas_list): | |
det_data_samples_list[i].set_metainfo({f'{key}': img_meta}) | |
track_data_sample = TrackDataSample() | |
track_data_sample.video_data_samples = det_data_samples_list | |
if 'key_frame_flags' in results: | |
key_frame_flags = np.asarray(results['key_frame_flags']) | |
key_frames_inds = np.where(key_frame_flags)[0].tolist() | |
ref_frames_inds = np.where(~key_frame_flags)[0].tolist() | |
track_data_sample.set_metainfo( | |
dict(key_frames_inds=key_frames_inds)) | |
track_data_sample.set_metainfo( | |
dict(ref_frames_inds=ref_frames_inds)) | |
packed_results['data_samples'] = track_data_sample | |
return packed_results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'meta_keys={self.meta_keys}, ' | |
repr_str += f'default_meta_keys={self.default_meta_keys})' | |
return repr_str | |
class PackReIDInputs(BaseTransform): | |
"""Pack the inputs data for the ReID. The ``meta_info`` item is always | |
populated. The contents of the ``meta_info`` dictionary depends on | |
``meta_keys``. By default this includes: | |
- ``img_path``: path to the image file. | |
- ``ori_shape``: original shape of the image as a tuple (H, W). | |
- ``img_shape``: shape of the image input to the network as a tuple | |
(H, W). Note that images may be zero padded on the bottom/right | |
if the batch tensor is larger than this shape. | |
- ``scale``: scale of the image as a tuple (W, H). | |
- ``scale_factor``: a float indicating the pre-processing scale. | |
- ``flip``: a boolean indicating if image flip transform was used. | |
- ``flip_direction``: the flipping direction. | |
Args: | |
meta_keys (Sequence[str], optional): The meta keys to saved in the | |
``metainfo`` of the packed ``data_sample``. | |
""" | |
default_meta_keys = ('img_path', 'ori_shape', 'img_shape', 'scale', | |
'scale_factor') | |
def __init__(self, meta_keys: Sequence[str] = ()) -> None: | |
self.meta_keys = self.default_meta_keys | |
if meta_keys is not None: | |
if isinstance(meta_keys, str): | |
meta_keys = (meta_keys, ) | |
else: | |
assert isinstance(meta_keys, tuple), \ | |
'meta_keys must be str or tuple.' | |
self.meta_keys += meta_keys | |
def transform(self, results: dict) -> dict: | |
"""Method to pack the input data. | |
Args: | |
results (dict): Result dict from the data pipeline. | |
Returns: | |
dict: | |
- 'inputs' (dict[Tensor]): The forward data of models. | |
- 'data_samples' (obj:`ReIDDataSample`): The meta info of the | |
sample. | |
""" | |
packed_results = dict(inputs=dict(), data_samples=None) | |
assert 'img' in results, 'Missing the key ``img``.' | |
_type = type(results['img']) | |
label = results['gt_label'] | |
if _type == list: | |
img = results['img'] | |
label = np.stack(label, axis=0) # (N,) | |
assert all([type(v) == _type for v in results.values()]), \ | |
'All items in the results must have the same type.' | |
else: | |
img = [results['img']] | |
img = np.stack(img, axis=3) # (H, W, C, N) | |
img = img.transpose(3, 2, 0, 1) # (N, C, H, W) | |
img = np.ascontiguousarray(img) | |
packed_results['inputs'] = to_tensor(img) | |
data_sample = ReIDDataSample() | |
data_sample.set_gt_label(label) | |
meta_info = dict() | |
for key in self.meta_keys: | |
meta_info[key] = results[key] | |
data_sample.set_metainfo(meta_info) | |
packed_results['data_samples'] = data_sample | |
return packed_results | |
def __repr__(self) -> str: | |
repr_str = self.__class__.__name__ | |
repr_str += f'(meta_keys={self.meta_keys})' | |
return repr_str | |