sapiens-pose / external /det /mmdet /engine /hooks /visualization_hook.py
rawalkhirodkar's picture
Add initial commit
28c256d
raw
history blame
13.5 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os.path as osp
import warnings
from typing import Optional, Sequence
import mmcv
from mmengine.fileio import get
from mmengine.hooks import Hook
from mmengine.runner import Runner
from mmengine.utils import mkdir_or_exist
from mmengine.visualization import Visualizer
from mmdet.datasets.samplers import TrackImgSampler
from mmdet.registry import HOOKS
from mmdet.structures import DetDataSample, TrackDataSample
@HOOKS.register_module()
class DetVisualizationHook(Hook):
"""Detection Visualization Hook. Used to visualize validation and testing
process prediction results.
In the testing phase:
1. If ``show`` is True, it means that only the prediction results are
visualized without storing data, so ``vis_backends`` needs to
be excluded.
2. If ``test_out_dir`` is specified, it means that the prediction results
need to be saved to ``test_out_dir``. In order to avoid vis_backends
also storing data, so ``vis_backends`` needs to be excluded.
3. ``vis_backends`` takes effect if the user does not specify ``show``
and `test_out_dir``. You can set ``vis_backends`` to WandbVisBackend or
TensorboardVisBackend to store the prediction result in Wandb or
Tensorboard.
Args:
draw (bool): whether to draw prediction results. If it is False,
it means that no drawing will be done. Defaults to False.
interval (int): The interval of visualization. Defaults to 50.
score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
test_out_dir (str, optional): directory where painted images
will be saved in testing process.
backend_args (dict, optional): Arguments to instantiate the
corresponding backend. Defaults to None.
"""
def __init__(self,
draw: bool = False,
interval: int = 50,
score_thr: float = 0.3,
show: bool = False,
wait_time: float = 0.,
test_out_dir: Optional[str] = None,
backend_args: dict = None):
self._visualizer: Visualizer = Visualizer.get_current_instance()
self.interval = interval
self.score_thr = score_thr
self.show = show
if self.show:
# No need to think about vis backends.
self._visualizer._vis_backends = {}
warnings.warn('The show is True, it means that only '
'the prediction results are visualized '
'without storing data, so vis_backends '
'needs to be excluded.')
self.wait_time = wait_time
self.backend_args = backend_args
self.draw = draw
self.test_out_dir = test_out_dir
self._test_index = 0
def after_val_iter(self, runner: Runner, batch_idx: int, data_batch: dict,
outputs: Sequence[DetDataSample]) -> None:
"""Run after every ``self.interval`` validation iterations.
Args:
runner (:obj:`Runner`): The runner of the validation process.
batch_idx (int): The index of the current batch in the val loop.
data_batch (dict): Data from dataloader.
outputs (Sequence[:obj:`DetDataSample`]]): A batch of data samples
that contain annotations and predictions.
"""
if self.draw is False:
return
# There is no guarantee that the same batch of images
# is visualized for each evaluation.
total_curr_iter = runner.iter + batch_idx
# Visualize only the first data
img_path = outputs[0].img_path
img_bytes = get(img_path, backend_args=self.backend_args)
img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
if total_curr_iter % self.interval == 0:
self._visualizer.add_datasample(
osp.basename(img_path) if self.show else 'val_img',
img,
data_sample=outputs[0],
show=self.show,
wait_time=self.wait_time,
pred_score_thr=self.score_thr,
step=total_curr_iter)
def after_test_iter(self, runner: Runner, batch_idx: int, data_batch: dict,
outputs: Sequence[DetDataSample]) -> None:
"""Run after every testing iterations.
Args:
runner (:obj:`Runner`): The runner of the testing process.
batch_idx (int): The index of the current batch in the val loop.
data_batch (dict): Data from dataloader.
outputs (Sequence[:obj:`DetDataSample`]): A batch of data samples
that contain annotations and predictions.
"""
if self.draw is False:
return
if self.test_out_dir is not None:
self.test_out_dir = osp.join(runner.work_dir, runner.timestamp,
self.test_out_dir)
mkdir_or_exist(self.test_out_dir)
for data_sample in outputs:
self._test_index += 1
img_path = data_sample.img_path
img_bytes = get(img_path, backend_args=self.backend_args)
img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
out_file = None
if self.test_out_dir is not None:
out_file = osp.basename(img_path)
out_file = osp.join(self.test_out_dir, out_file)
self._visualizer.add_datasample(
osp.basename(img_path) if self.show else 'test_img',
img,
data_sample=data_sample,
show=self.show,
wait_time=self.wait_time,
pred_score_thr=self.score_thr,
out_file=out_file,
step=self._test_index)
@HOOKS.register_module()
class TrackVisualizationHook(Hook):
"""Tracking Visualization Hook. Used to visualize validation and testing
process prediction results.
In the testing phase:
1. If ``show`` is True, it means that only the prediction results are
visualized without storing data, so ``vis_backends`` needs to
be excluded.
2. If ``test_out_dir`` is specified, it means that the prediction results
need to be saved to ``test_out_dir``. In order to avoid vis_backends
also storing data, so ``vis_backends`` needs to be excluded.
3. ``vis_backends`` takes effect if the user does not specify ``show``
and `test_out_dir``. You can set ``vis_backends`` to WandbVisBackend or
TensorboardVisBackend to store the prediction result in Wandb or
Tensorboard.
Args:
draw (bool): whether to draw prediction results. If it is False,
it means that no drawing will be done. Defaults to False.
frame_interval (int): The interval of visualization. Defaults to 30.
score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
test_out_dir (str, optional): directory where painted images
will be saved in testing process.
backend_args (dict): Arguments to instantiate a file client.
Defaults to ``None``.
"""
def __init__(self,
draw: bool = False,
frame_interval: int = 30,
score_thr: float = 0.3,
show: bool = False,
wait_time: float = 0.,
test_out_dir: Optional[str] = None,
backend_args: dict = None) -> None:
self._visualizer: Visualizer = Visualizer.get_current_instance()
self.frame_interval = frame_interval
self.score_thr = score_thr
self.show = show
if self.show:
# No need to think about vis backends.
self._visualizer._vis_backends = {}
warnings.warn('The show is True, it means that only '
'the prediction results are visualized '
'without storing data, so vis_backends '
'needs to be excluded.')
self.wait_time = wait_time
self.backend_args = backend_args
self.draw = draw
self.test_out_dir = test_out_dir
self.image_idx = 0
def after_val_iter(self, runner: Runner, batch_idx: int, data_batch: dict,
outputs: Sequence[TrackDataSample]) -> None:
"""Run after every ``self.interval`` validation iteration.
Args:
runner (:obj:`Runner`): The runner of the validation process.
batch_idx (int): The index of the current batch in the val loop.
data_batch (dict): Data from dataloader.
outputs (Sequence[:obj:`TrackDataSample`]): Outputs from model.
"""
if self.draw is False:
return
assert len(outputs) == 1,\
'only batch_size=1 is supported while validating.'
sampler = runner.val_dataloader.sampler
if isinstance(sampler, TrackImgSampler):
if self.every_n_inner_iters(batch_idx, self.frame_interval):
total_curr_iter = runner.iter + batch_idx
track_data_sample = outputs[0]
self.visualize_single_image(track_data_sample[0],
total_curr_iter)
else:
# video visualization DefaultSampler
if self.every_n_inner_iters(batch_idx, 1):
track_data_sample = outputs[0]
video_length = len(track_data_sample)
for frame_id in range(video_length):
if frame_id % self.frame_interval == 0:
total_curr_iter = runner.iter + self.image_idx + \
frame_id
img_data_sample = track_data_sample[frame_id]
self.visualize_single_image(img_data_sample,
total_curr_iter)
self.image_idx = self.image_idx + video_length
def after_test_iter(self, runner: Runner, batch_idx: int, data_batch: dict,
outputs: Sequence[TrackDataSample]) -> None:
"""Run after every testing iteration.
Args:
runner (:obj:`Runner`): The runner of the testing process.
batch_idx (int): The index of the current batch in the test loop.
data_batch (dict): Data from dataloader.
outputs (Sequence[:obj:`TrackDataSample`]): Outputs from model.
"""
if self.draw is False:
return
assert len(outputs) == 1, \
'only batch_size=1 is supported while testing.'
if self.test_out_dir is not None:
self.test_out_dir = osp.join(runner.work_dir, runner.timestamp,
self.test_out_dir)
mkdir_or_exist(self.test_out_dir)
sampler = runner.test_dataloader.sampler
if isinstance(sampler, TrackImgSampler):
if self.every_n_inner_iters(batch_idx, self.frame_interval):
track_data_sample = outputs[0]
self.visualize_single_image(track_data_sample[0], batch_idx)
else:
# video visualization DefaultSampler
if self.every_n_inner_iters(batch_idx, 1):
track_data_sample = outputs[0]
video_length = len(track_data_sample)
for frame_id in range(video_length):
if frame_id % self.frame_interval == 0:
img_data_sample = track_data_sample[frame_id]
self.visualize_single_image(img_data_sample,
self.image_idx + frame_id)
self.image_idx = self.image_idx + video_length
def visualize_single_image(self, img_data_sample: DetDataSample,
step: int) -> None:
"""
Args:
img_data_sample (DetDataSample): single image output.
step (int): The index of the current image.
"""
img_path = img_data_sample.img_path
img_bytes = get(img_path, backend_args=self.backend_args)
img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
out_file = None
if self.test_out_dir is not None:
video_name = img_path.split('/')[-3]
mkdir_or_exist(osp.join(self.test_out_dir, video_name))
out_file = osp.join(self.test_out_dir, video_name,
osp.basename(img_path))
self._visualizer.add_datasample(
osp.basename(img_path) if self.show else 'test_img',
img,
data_sample=img_data_sample,
show=self.show,
wait_time=self.wait_time,
pred_score_thr=self.score_thr,
out_file=out_file,
step=step)