Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from mmengine.runner import load_checkpoint | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.structures import SampleList | |
from mmdet.utils import ConfigType, OptConfigType | |
from ..utils.misc import unpack_gt_instances | |
from .kd_one_stage import KnowledgeDistillationSingleStageDetector | |
class LAD(KnowledgeDistillationSingleStageDetector): | |
"""Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" | |
def __init__(self, | |
backbone: ConfigType, | |
neck: ConfigType, | |
bbox_head: ConfigType, | |
teacher_backbone: ConfigType, | |
teacher_neck: ConfigType, | |
teacher_bbox_head: ConfigType, | |
teacher_ckpt: Optional[str] = None, | |
eval_teacher: bool = True, | |
train_cfg: OptConfigType = None, | |
test_cfg: OptConfigType = None, | |
data_preprocessor: OptConfigType = None) -> None: | |
super(KnowledgeDistillationSingleStageDetector, self).__init__( | |
backbone=backbone, | |
neck=neck, | |
bbox_head=bbox_head, | |
train_cfg=train_cfg, | |
test_cfg=test_cfg, | |
data_preprocessor=data_preprocessor) | |
self.eval_teacher = eval_teacher | |
self.teacher_model = nn.Module() | |
self.teacher_model.backbone = MODELS.build(teacher_backbone) | |
if teacher_neck is not None: | |
self.teacher_model.neck = MODELS.build(teacher_neck) | |
teacher_bbox_head.update(train_cfg=train_cfg) | |
teacher_bbox_head.update(test_cfg=test_cfg) | |
self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head) | |
if teacher_ckpt is not None: | |
load_checkpoint( | |
self.teacher_model, teacher_ckpt, map_location='cpu') | |
def with_teacher_neck(self) -> bool: | |
"""bool: whether the detector has a teacher_neck""" | |
return hasattr(self.teacher_model, 'neck') and \ | |
self.teacher_model.neck is not None | |
def extract_teacher_feat(self, batch_inputs: Tensor) -> Tensor: | |
"""Directly extract teacher features from the backbone+neck.""" | |
x = self.teacher_model.backbone(batch_inputs) | |
if self.with_teacher_neck: | |
x = self.teacher_model.neck(x) | |
return x | |
def loss(self, batch_inputs: Tensor, | |
batch_data_samples: SampleList) -> dict: | |
""" | |
Args: | |
batch_inputs (Tensor): Input images of shape (N, C, H, W). | |
These should usually be mean centered and std scaled. | |
batch_data_samples (list[:obj:`DetDataSample`]): The batch | |
data samples. It usually includes information such | |
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
outputs = unpack_gt_instances(batch_data_samples) | |
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ | |
= outputs | |
# get label assignment from the teacher | |
with torch.no_grad(): | |
x_teacher = self.extract_teacher_feat(batch_inputs) | |
outs_teacher = self.teacher_model.bbox_head(x_teacher) | |
label_assignment_results = \ | |
self.teacher_model.bbox_head.get_label_assignment( | |
*outs_teacher, batch_gt_instances, batch_img_metas, | |
batch_gt_instances_ignore) | |
# the student use the label assignment from the teacher to learn | |
x = self.extract_feat(batch_inputs) | |
losses = self.bbox_head.loss(x, label_assignment_results, | |
batch_data_samples) | |
return losses | |