rawalkhirodkar's picture
Add initial commit
28c256d
raw
history blame
4.03 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional
import torch
import torch.nn as nn
from mmengine.runner import load_checkpoint
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.utils import ConfigType, OptConfigType
from ..utils.misc import unpack_gt_instances
from .kd_one_stage import KnowledgeDistillationSingleStageDetector
@MODELS.register_module()
class LAD(KnowledgeDistillationSingleStageDetector):
"""Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_."""
def __init__(self,
backbone: ConfigType,
neck: ConfigType,
bbox_head: ConfigType,
teacher_backbone: ConfigType,
teacher_neck: ConfigType,
teacher_bbox_head: ConfigType,
teacher_ckpt: Optional[str] = None,
eval_teacher: bool = True,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None) -> None:
super(KnowledgeDistillationSingleStageDetector, self).__init__(
backbone=backbone,
neck=neck,
bbox_head=bbox_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor)
self.eval_teacher = eval_teacher
self.teacher_model = nn.Module()
self.teacher_model.backbone = MODELS.build(teacher_backbone)
if teacher_neck is not None:
self.teacher_model.neck = MODELS.build(teacher_neck)
teacher_bbox_head.update(train_cfg=train_cfg)
teacher_bbox_head.update(test_cfg=test_cfg)
self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head)
if teacher_ckpt is not None:
load_checkpoint(
self.teacher_model, teacher_ckpt, map_location='cpu')
@property
def with_teacher_neck(self) -> bool:
"""bool: whether the detector has a teacher_neck"""
return hasattr(self.teacher_model, 'neck') and \
self.teacher_model.neck is not None
def extract_teacher_feat(self, batch_inputs: Tensor) -> Tensor:
"""Directly extract teacher features from the backbone+neck."""
x = self.teacher_model.backbone(batch_inputs)
if self.with_teacher_neck:
x = self.teacher_model.neck(x)
return x
def loss(self, batch_inputs: Tensor,
batch_data_samples: SampleList) -> dict:
"""
Args:
batch_inputs (Tensor): Input images of shape (N, C, H, W).
These should usually be mean centered and std scaled.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
outputs = unpack_gt_instances(batch_data_samples)
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
= outputs
# get label assignment from the teacher
with torch.no_grad():
x_teacher = self.extract_teacher_feat(batch_inputs)
outs_teacher = self.teacher_model.bbox_head(x_teacher)
label_assignment_results = \
self.teacher_model.bbox_head.get_label_assignment(
*outs_teacher, batch_gt_instances, batch_img_metas,
batch_gt_instances_ignore)
# the student use the label assignment from the teacher to learn
x = self.extract_feat(batch_inputs)
losses = self.bbox_head.loss(x, label_assignment_results,
batch_data_samples)
return losses