Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmdet.registry import MODELS | |
eps = 1e-6 | |
class DropBlock(nn.Module): | |
"""Randomly drop some regions of feature maps. | |
Please refer to the method proposed in `DropBlock | |
<https://arxiv.org/abs/1810.12890>`_ for details. | |
Args: | |
drop_prob (float): The probability of dropping each block. | |
block_size (int): The size of dropped blocks. | |
warmup_iters (int): The drop probability will linearly increase | |
from `0` to `drop_prob` during the first `warmup_iters` iterations. | |
Default: 2000. | |
""" | |
def __init__(self, drop_prob, block_size, warmup_iters=2000, **kwargs): | |
super(DropBlock, self).__init__() | |
assert block_size % 2 == 1 | |
assert 0 < drop_prob <= 1 | |
assert warmup_iters >= 0 | |
self.drop_prob = drop_prob | |
self.block_size = block_size | |
self.warmup_iters = warmup_iters | |
self.iter_cnt = 0 | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): Input feature map on which some areas will be randomly | |
dropped. | |
Returns: | |
Tensor: The tensor after DropBlock layer. | |
""" | |
if not self.training: | |
return x | |
self.iter_cnt += 1 | |
N, C, H, W = list(x.shape) | |
gamma = self._compute_gamma((H, W)) | |
mask_shape = (N, C, H - self.block_size + 1, W - self.block_size + 1) | |
mask = torch.bernoulli(torch.full(mask_shape, gamma, device=x.device)) | |
mask = F.pad(mask, [self.block_size // 2] * 4, value=0) | |
mask = F.max_pool2d( | |
input=mask, | |
stride=(1, 1), | |
kernel_size=(self.block_size, self.block_size), | |
padding=self.block_size // 2) | |
mask = 1 - mask | |
x = x * mask * mask.numel() / (eps + mask.sum()) | |
return x | |
def _compute_gamma(self, feat_size): | |
"""Compute the value of gamma according to paper. gamma is the | |
parameter of bernoulli distribution, which controls the number of | |
features to drop. | |
gamma = (drop_prob * fm_area) / (drop_area * keep_area) | |
Args: | |
feat_size (tuple[int, int]): The height and width of feature map. | |
Returns: | |
float: The value of gamma. | |
""" | |
gamma = (self.drop_prob * feat_size[0] * feat_size[1]) | |
gamma /= ((feat_size[0] - self.block_size + 1) * | |
(feat_size[1] - self.block_size + 1)) | |
gamma /= (self.block_size**2) | |
factor = (1.0 if self.iter_cnt > self.warmup_iters else self.iter_cnt / | |
self.warmup_iters) | |
return gamma * factor | |
def extra_repr(self): | |
return (f'drop_prob={self.drop_prob}, block_size={self.block_size}, ' | |
f'warmup_iters={self.warmup_iters}') | |