Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from mmengine.model import ExponentialMovingAverage | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
class ExpMomentumEMA(ExponentialMovingAverage): | |
"""Exponential moving average (EMA) with exponential momentum strategy, | |
which is used in YOLOX. | |
Args: | |
model (nn.Module): The model to be averaged. | |
momentum (float): The momentum used for updating ema parameter. | |
Ema's parameter are updated with the formula: | |
`averaged_param = (1-momentum) * averaged_param + momentum * | |
source_param`. Defaults to 0.0002. | |
gamma (int): Use a larger momentum early in training and gradually | |
annealing to a smaller value to update the ema model smoothly. The | |
momentum is calculated as | |
`(1 - momentum) * exp(-(1 + steps) / gamma) + momentum`. | |
Defaults to 2000. | |
interval (int): Interval between two updates. Defaults to 1. | |
device (torch.device, optional): If provided, the averaged model will | |
be stored on the :attr:`device`. Defaults to None. | |
update_buffers (bool): if True, it will compute running averages for | |
both the parameters and the buffers of the model. Defaults to | |
False. | |
""" | |
def __init__(self, | |
model: nn.Module, | |
momentum: float = 0.0002, | |
gamma: int = 2000, | |
interval=1, | |
device: Optional[torch.device] = None, | |
update_buffers: bool = False) -> None: | |
super().__init__( | |
model=model, | |
momentum=momentum, | |
interval=interval, | |
device=device, | |
update_buffers=update_buffers) | |
assert gamma > 0, f'gamma must be greater than 0, but got {gamma}' | |
self.gamma = gamma | |
def avg_func(self, averaged_param: Tensor, source_param: Tensor, | |
steps: int) -> None: | |
"""Compute the moving average of the parameters using the exponential | |
momentum strategy. | |
Args: | |
averaged_param (Tensor): The averaged parameters. | |
source_param (Tensor): The source parameters. | |
steps (int): The number of times the parameters have been | |
updated. | |
""" | |
momentum = (1 - self.momentum) * math.exp( | |
-float(1 + steps) / self.gamma) + self.momentum | |
averaged_param.mul_(1 - momentum).add_(source_param, alpha=momentum) | |