Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import build_activation_layer, build_norm_layer | |
from mmcv.ops.modulated_deform_conv import ModulatedDeformConv2d | |
from mmengine.model import BaseModule, constant_init, normal_init | |
from mmdet.registry import MODELS | |
from ..layers import DyReLU | |
# Reference: | |
# https://github.com/microsoft/DynamicHead | |
# https://github.com/jshilong/SEPC | |
class DyDCNv2(nn.Module): | |
"""ModulatedDeformConv2d with normalization layer used in DyHead. | |
This module cannot be configured with `conv_cfg=dict(type='DCNv2')` | |
because DyHead calculates offset and mask from middle-level feature. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
stride (int | tuple[int], optional): Stride of the convolution. | |
Default: 1. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Default: dict(type='GN', num_groups=16, requires_grad=True). | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
stride=1, | |
norm_cfg=dict(type='GN', num_groups=16, requires_grad=True)): | |
super().__init__() | |
self.with_norm = norm_cfg is not None | |
bias = not self.with_norm | |
self.conv = ModulatedDeformConv2d( | |
in_channels, out_channels, 3, stride=stride, padding=1, bias=bias) | |
if self.with_norm: | |
self.norm = build_norm_layer(norm_cfg, out_channels)[1] | |
def forward(self, x, offset, mask): | |
"""Forward function.""" | |
x = self.conv(x.contiguous(), offset, mask) | |
if self.with_norm: | |
x = self.norm(x) | |
return x | |
class DyHeadBlock(nn.Module): | |
"""DyHead Block with three types of attention. | |
HSigmoid arguments in default act_cfg follow official code, not paper. | |
https://github.com/microsoft/DynamicHead/blob/master/dyhead/dyrelu.py | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
zero_init_offset (bool, optional): Whether to use zero init for | |
`spatial_conv_offset`. Default: True. | |
act_cfg (dict, optional): Config dict for the last activation layer of | |
scale-aware attention. Default: dict(type='HSigmoid', bias=3.0, | |
divisor=6.0). | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
zero_init_offset=True, | |
act_cfg=dict(type='HSigmoid', bias=3.0, divisor=6.0)): | |
super().__init__() | |
self.zero_init_offset = zero_init_offset | |
# (offset_x, offset_y, mask) * kernel_size_y * kernel_size_x | |
self.offset_and_mask_dim = 3 * 3 * 3 | |
self.offset_dim = 2 * 3 * 3 | |
self.spatial_conv_high = DyDCNv2(in_channels, out_channels) | |
self.spatial_conv_mid = DyDCNv2(in_channels, out_channels) | |
self.spatial_conv_low = DyDCNv2(in_channels, out_channels, stride=2) | |
self.spatial_conv_offset = nn.Conv2d( | |
in_channels, self.offset_and_mask_dim, 3, padding=1) | |
self.scale_attn_module = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), nn.Conv2d(out_channels, 1, 1), | |
nn.ReLU(inplace=True), build_activation_layer(act_cfg)) | |
self.task_attn_module = DyReLU(out_channels) | |
self._init_weights() | |
def _init_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, 0, 0.01) | |
if self.zero_init_offset: | |
constant_init(self.spatial_conv_offset, 0) | |
def forward(self, x): | |
"""Forward function.""" | |
outs = [] | |
for level in range(len(x)): | |
# calculate offset and mask of DCNv2 from middle-level feature | |
offset_and_mask = self.spatial_conv_offset(x[level]) | |
offset = offset_and_mask[:, :self.offset_dim, :, :] | |
mask = offset_and_mask[:, self.offset_dim:, :, :].sigmoid() | |
mid_feat = self.spatial_conv_mid(x[level], offset, mask) | |
sum_feat = mid_feat * self.scale_attn_module(mid_feat) | |
summed_levels = 1 | |
if level > 0: | |
low_feat = self.spatial_conv_low(x[level - 1], offset, mask) | |
sum_feat += low_feat * self.scale_attn_module(low_feat) | |
summed_levels += 1 | |
if level < len(x) - 1: | |
# this upsample order is weird, but faster than natural order | |
# https://github.com/microsoft/DynamicHead/issues/25 | |
high_feat = F.interpolate( | |
self.spatial_conv_high(x[level + 1], offset, mask), | |
size=x[level].shape[-2:], | |
mode='bilinear', | |
align_corners=True) | |
sum_feat += high_feat * self.scale_attn_module(high_feat) | |
summed_levels += 1 | |
outs.append(self.task_attn_module(sum_feat / summed_levels)) | |
return outs | |
class DyHead(BaseModule): | |
"""DyHead neck consisting of multiple DyHead Blocks. | |
See `Dynamic Head: Unifying Object Detection Heads with Attentions | |
<https://arxiv.org/abs/2106.08322>`_ for details. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
num_blocks (int, optional): Number of DyHead Blocks. Default: 6. | |
zero_init_offset (bool, optional): Whether to use zero init for | |
`spatial_conv_offset`. Default: True. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
num_blocks=6, | |
zero_init_offset=True, | |
init_cfg=None): | |
assert init_cfg is None, 'To prevent abnormal initialization ' \ | |
'behavior, init_cfg is not allowed to be set' | |
super().__init__(init_cfg=init_cfg) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.num_blocks = num_blocks | |
self.zero_init_offset = zero_init_offset | |
dyhead_blocks = [] | |
for i in range(num_blocks): | |
in_channels = self.in_channels if i == 0 else self.out_channels | |
dyhead_blocks.append( | |
DyHeadBlock( | |
in_channels, | |
self.out_channels, | |
zero_init_offset=zero_init_offset)) | |
self.dyhead_blocks = nn.Sequential(*dyhead_blocks) | |
def forward(self, inputs): | |
"""Forward function.""" | |
assert isinstance(inputs, (tuple, list)) | |
outs = self.dyhead_blocks(inputs) | |
return tuple(outs) | |