Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import List, Optional | |
from mmengine.structures import BaseDataElement, InstanceData, PixelData | |
class DetDataSample(BaseDataElement): | |
"""A data structure interface of MMDetection. They are used as interfaces | |
between different components. | |
The attributes in ``DetDataSample`` are divided into several parts: | |
- ``proposals``(InstanceData): Region proposals used in two-stage | |
detectors. | |
- ``gt_instances``(InstanceData): Ground truth of instance annotations. | |
- ``pred_instances``(InstanceData): Instances of detection predictions. | |
- ``pred_track_instances``(InstanceData): Instances of tracking | |
predictions. | |
- ``ignored_instances``(InstanceData): Instances to be ignored during | |
training/testing. | |
- ``gt_panoptic_seg``(PixelData): Ground truth of panoptic | |
segmentation. | |
- ``pred_panoptic_seg``(PixelData): Prediction of panoptic | |
segmentation. | |
- ``gt_sem_seg``(PixelData): Ground truth of semantic segmentation. | |
- ``pred_sem_seg``(PixelData): Prediction of semantic segmentation. | |
Examples: | |
>>> import torch | |
>>> import numpy as np | |
>>> from mmengine.structures import InstanceData | |
>>> from mmdet.structures import DetDataSample | |
>>> data_sample = DetDataSample() | |
>>> img_meta = dict(img_shape=(800, 1196), | |
... pad_shape=(800, 1216)) | |
>>> gt_instances = InstanceData(metainfo=img_meta) | |
>>> gt_instances.bboxes = torch.rand((5, 4)) | |
>>> gt_instances.labels = torch.rand((5,)) | |
>>> data_sample.gt_instances = gt_instances | |
>>> assert 'img_shape' in data_sample.gt_instances.metainfo_keys() | |
>>> len(data_sample.gt_instances) | |
5 | |
>>> print(data_sample) | |
<DetDataSample( | |
META INFORMATION | |
DATA FIELDS | |
gt_instances: <InstanceData( | |
META INFORMATION | |
pad_shape: (800, 1216) | |
img_shape: (800, 1196) | |
DATA FIELDS | |
labels: tensor([0.8533, 0.1550, 0.5433, 0.7294, 0.5098]) | |
bboxes: | |
tensor([[9.7725e-01, 5.8417e-01, 1.7269e-01, 6.5694e-01], | |
[1.7894e-01, 5.1780e-01, 7.0590e-01, 4.8589e-01], | |
[7.0392e-01, 6.6770e-01, 1.7520e-01, 1.4267e-01], | |
[2.2411e-01, 5.1962e-01, 9.6953e-01, 6.6994e-01], | |
[4.1338e-01, 2.1165e-01, 2.7239e-04, 6.8477e-01]]) | |
) at 0x7f21fb1b9190> | |
) at 0x7f21fb1b9880> | |
>>> pred_instances = InstanceData(metainfo=img_meta) | |
>>> pred_instances.bboxes = torch.rand((5, 4)) | |
>>> pred_instances.scores = torch.rand((5,)) | |
>>> data_sample = DetDataSample(pred_instances=pred_instances) | |
>>> assert 'pred_instances' in data_sample | |
>>> pred_track_instances = InstanceData(metainfo=img_meta) | |
>>> pred_track_instances.bboxes = torch.rand((5, 4)) | |
>>> pred_track_instances.scores = torch.rand((5,)) | |
>>> data_sample = DetDataSample( | |
... pred_track_instances=pred_track_instances) | |
>>> assert 'pred_track_instances' in data_sample | |
>>> data_sample = DetDataSample() | |
>>> gt_instances_data = dict( | |
... bboxes=torch.rand(2, 4), | |
... labels=torch.rand(2), | |
... masks=np.random.rand(2, 2, 2)) | |
>>> gt_instances = InstanceData(**gt_instances_data) | |
>>> data_sample.gt_instances = gt_instances | |
>>> assert 'gt_instances' in data_sample | |
>>> assert 'masks' in data_sample.gt_instances | |
>>> data_sample = DetDataSample() | |
>>> gt_panoptic_seg_data = dict(panoptic_seg=torch.rand(2, 4)) | |
>>> gt_panoptic_seg = PixelData(**gt_panoptic_seg_data) | |
>>> data_sample.gt_panoptic_seg = gt_panoptic_seg | |
>>> print(data_sample) | |
<DetDataSample( | |
META INFORMATION | |
DATA FIELDS | |
_gt_panoptic_seg: <BaseDataElement( | |
META INFORMATION | |
DATA FIELDS | |
panoptic_seg: tensor([[0.7586, 0.1262, 0.2892, 0.9341], | |
[0.3200, 0.7448, 0.1052, 0.5371]]) | |
) at 0x7f66c2bb7730> | |
gt_panoptic_seg: <BaseDataElement( | |
META INFORMATION | |
DATA FIELDS | |
panoptic_seg: tensor([[0.7586, 0.1262, 0.2892, 0.9341], | |
[0.3200, 0.7448, 0.1052, 0.5371]]) | |
) at 0x7f66c2bb7730> | |
) at 0x7f66c2bb7280> | |
>>> data_sample = DetDataSample() | |
>>> gt_segm_seg_data = dict(segm_seg=torch.rand(2, 2, 2)) | |
>>> gt_segm_seg = PixelData(**gt_segm_seg_data) | |
>>> data_sample.gt_segm_seg = gt_segm_seg | |
>>> assert 'gt_segm_seg' in data_sample | |
>>> assert 'segm_seg' in data_sample.gt_segm_seg | |
""" | |
def proposals(self) -> InstanceData: | |
return self._proposals | |
def proposals(self, value: InstanceData): | |
self.set_field(value, '_proposals', dtype=InstanceData) | |
def proposals(self): | |
del self._proposals | |
def gt_instances(self) -> InstanceData: | |
return self._gt_instances | |
def gt_instances(self, value: InstanceData): | |
self.set_field(value, '_gt_instances', dtype=InstanceData) | |
def gt_instances(self): | |
del self._gt_instances | |
def pred_instances(self) -> InstanceData: | |
return self._pred_instances | |
def pred_instances(self, value: InstanceData): | |
self.set_field(value, '_pred_instances', dtype=InstanceData) | |
def pred_instances(self): | |
del self._pred_instances | |
# directly add ``pred_track_instances`` in ``DetDataSample`` | |
# so that the ``TrackDataSample`` does not bother to access the | |
# instance-level information. | |
def pred_track_instances(self) -> InstanceData: | |
return self._pred_track_instances | |
def pred_track_instances(self, value: InstanceData): | |
self.set_field(value, '_pred_track_instances', dtype=InstanceData) | |
def pred_track_instances(self): | |
del self._pred_track_instances | |
def ignored_instances(self) -> InstanceData: | |
return self._ignored_instances | |
def ignored_instances(self, value: InstanceData): | |
self.set_field(value, '_ignored_instances', dtype=InstanceData) | |
def ignored_instances(self): | |
del self._ignored_instances | |
def gt_panoptic_seg(self) -> PixelData: | |
return self._gt_panoptic_seg | |
def gt_panoptic_seg(self, value: PixelData): | |
self.set_field(value, '_gt_panoptic_seg', dtype=PixelData) | |
def gt_panoptic_seg(self): | |
del self._gt_panoptic_seg | |
def pred_panoptic_seg(self) -> PixelData: | |
return self._pred_panoptic_seg | |
def pred_panoptic_seg(self, value: PixelData): | |
self.set_field(value, '_pred_panoptic_seg', dtype=PixelData) | |
def pred_panoptic_seg(self): | |
del self._pred_panoptic_seg | |
def gt_sem_seg(self) -> PixelData: | |
return self._gt_sem_seg | |
def gt_sem_seg(self, value: PixelData): | |
self.set_field(value, '_gt_sem_seg', dtype=PixelData) | |
def gt_sem_seg(self): | |
del self._gt_sem_seg | |
def pred_sem_seg(self) -> PixelData: | |
return self._pred_sem_seg | |
def pred_sem_seg(self, value: PixelData): | |
self.set_field(value, '_pred_sem_seg', dtype=PixelData) | |
def pred_sem_seg(self): | |
del self._pred_sem_seg | |
SampleList = List[DetDataSample] | |
OptSampleList = Optional[SampleList] | |